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AFIT/GAE/ENY/10-D03 
Abstract 

  This research investigates the effects of prior aging at 274 °C on deformation 

behavior of PMR-15 neat resin at 288 °C. The experimental part of this effort explored 

the influence of strain rate on mechanical behavior.  Monotonic loading, loading followed 

by unloading at various constant strain rate magnitudes, recovery of strain at zero stress, 

creep, relaxation, and strain rate jump tests were used to explore the rate-dependent 

inelastic behavior and to elucidate the effect of prior isothermal aging. 

  The results of these tests suggest that the deformation behavior of the PMR-15 

polymer can be represented by a unified constitutive model where the inelastic strain rate 

depends on overstress. Experimental data was modeled using the Viscoplasticity Theory 

Based on Overstress for Polymers (VBOP).  The VBOP was characterized using strain-

controlled experiments and validated by comparing the model predictions with 

experimental results obtained in tests that differ in kind from those used for model 

characterization. To account for the effects of prior aging several VBOP model 

parameters were expanded into functions of prior aging duration. The model predictions 

were also compared with the experimental results obtained for the PMR-15 polymer 

subjected to 2000 h of prior aging in both strain-controlled tension to failure tests and 

stress-controlled creep tests. The deformation behavior of the material subjected to prior 

aging at 274°C was well represented by the VBOP. 

 Changes in material behavior due to prior aging at 274 °C were compared to 

changes in material behavior due to prior aging at 288 °C. The functional forms of the 

VBOP model parameters developed to account for the effects of prior aging at 274°C on 

the deformation behavior of PMR-15 at 288 °C were compared with the functional forms 

previously developed to account for the effects of aging at 288 °C. These results were 

used to qualitatively assess the effects of prior aging temperature on deformation 

behavior of the PMR-15 polymer.    
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1. Introduction 

Motivation 

Since the invention of the airplane the aeronautical industry has sought materials which 

would be able to provide required strength while minimizing weight thus increasing performance 

and decrease operating costs. This quest has driven the industry to adopt engineered composite 

materials in both moderate and high temperature applications. Composites have increasingly 

become the materials of choice with both military and commercial designers incorporating more 

and more composites into their airframes. However, the transition to composites has not been 

instantaneous.  Classical hesitancies about the use of composite materials have to do with their 

manufacturing cost and durability.  To increase the use of composites in aircraft and thus realize 

the potential weight savings we must better understand their mechanical behavior particularly 

regarding long term durability and performance at elevated temperature.     

Composites consist of at least two constituent materials which possess significantly 

different physical properties. To best understand composite behavior it is necessary to investigate 

the independent behavior of these constituent parts.  A particularly useful category of composite 

materials is the polymer matrix composite. At elevated temperature many polymer matrix 

materials are capable of significant inelastic deformation which is not well represented by the 

elastic/linear viscoelastic models typically used in design today [12]. This shortfall leads to the 

use of excessive safety margins or the exclusion of polymer matrix composites from some of the 

most advantageous applications.  
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For applications at elevated temperature polymerization of monomeric reactants-15 (PMR-

15) has become one of the most frequently used matrix materials [1].  PMR-15 has been extensively 

studied “in an effort to qualify the material for use in extreme conditions” [1]. Recent efforts at 

the Air Force Institute of Technology (AFIT) have focused on the effects of test temperature and 

high temperature aging on the mechanical behavior of PMR-15 [5, 10, 26, 28, 29].   It has been found 

that Viscoplasticity Based on Overstress for Polymers (VBOP) is capable of modeling many of the 

behaviors of PMR-15 at elevated temperature [5, 10, 25]. VBOP has been extended to incorporate 

prior aging [27] but up to this point aging temperature and test temperature have been varied 

jointly [5, 10, 25].  This effort will provide preliminary data necessary to begin separating the 

variables of aging temperature and aging duration. 

Problem Statement 

 Polymer matrix composites are used extensively in the aerospace industry.  A thorough 

understanding of the mechanical behavior of matrix is necessary to correctly design parts and 

generate accurate life predictions. Many of these applications require operation under conditions 

at which aging duration and operating temperature become important.  It is vital for the material 

models used in durability analysis to accurately predict the material behavior under these 

conditions. In order to correctly construct and characterize a material model, experimentation 

must be performed at elevated temperature and under representative aging conditions.  

Thesis Objective 

 This effort investigates the mechanical behavior at 288 °C of PMR-15 neat resin aged at 

274 °C in an argon. Strain-controlled tests at 288 °C will be used to characterize VBOP for 
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PMR-15 aged at 274 °C. Model parameters thus determined will be validated by comparing 

results of numerical simulations with the experimental data. Model parameters obtained for 

material subjected to prior aging for 50 to 1000 hours will be used to predict behavior of 

specimens aged for 2000 hours.  Experimental results as well as the results of modeling with the 

VBOP produced in this effort will be compared with the results of previous research performed 

on PMR-15 aged at 288 °C in order to provide a preliminary assessment of the effects of aging 

temperature on deformation behavior. 

Methodology 

 The research objectives outlined above were accomplished as follows: 

1. Assess specimen-to-specimen variability through room temperature modulus testing. 

2. Age material samples for various durations at 274 °C in argon. 

3. Assess effects of strain rate and of aging duration on stress-strain response through 

monotonic tensile tests. 

4. Assess unloading behavior through loading and unloading tests performed at constant 

strain rates for specimens subjected to prior aging for various durations between 50 and 

2000 hours. 

5. Assess recovery of strain at zero stress preceded by loading and unloading at several 

constant strain rates for specimens subjected to prior aging of various durations. 

6. Assess relaxation response through monotonic tests with a period of relaxation conducted 

at several constant strain rates on specimens subjected to prior aging of varying durations. 
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7. Perform creep tests preceded by strain-controlled loading to creep stress level on 

specimens subjected to prior aging of varying durations to determine at the effect of prior 

strain rate and of prior aging time on creep response. 

8. Assess presence or absence of strain rate history effect through strain rate jump test 

performed on specimens subjected to prior aging of varying durations. 

9. Determine VBOP model parameters from experimental data obtained in monotonic 

tensile tests and in relaxation tests on specimens subjected to prior aging for durations 

varying between 50 and 1000 hours. 

10. Validate the determined VBOP model parameters by comparing numerical simulations 

and model predictions of various strain-controlled and stress-controlled loading histories 

with experimental results. 

11. Determine and validate the VBOP model parameters for specimens subjected to prior 

aging for 2000 h. 

12. Compare results obtained for specimen aged at 274 °C to those obtained for specimens 

aged at 288 °C. 

  



 

5 

 

2. Background 

Polymer Matrix Composites 

 As previously discussed a composite consists of at least two materials with significantly 

different material properties.  Typical composites have reinforcement and matrix phases.  

Common reinforcement materials for aerospace components include glass, carbon, aramid, or 

boron fibers. These materials are typically stiffer and have greater tensile strength than the matrix 

materials.  The matrix phase serves to bind reinforcement fibers together and is responsible for 

material strength in the direction normal to the fibers, as well as for transmitting shear loads to the 

fibers and for providing additional strength in the direction of the fibers.  The most common matrix 

phases are polymer, metal, ceramic, and carbon.  Because of their low cost and relatively high 

strength to weight ratio polymer matrix materials are frequently used in aerospace structures. A 

polymer is a general term for any “macromolecule that contains many smaller groups of atoms, 

called monomeric units, which are covalently bonded” [30]. Polymers can further be sub-divided 

into three categories: elastomers, thermoplastics, and thermosets [9]. 

 Thermosets are “polymeric materials that in their final state cannot be fused, are insoluble, 

and degrade before melting” [16].  Unlike elastomers and thermoplastics, thermosets retain 

significant strength close to their melting temperatures. Thermosets may in turn be divided into three 

categories: polyesters, epoxies, and polyimides.  Polyimides are the only class of thermoset polymers 

capable of operation at high temperatures up to 370 °C [9].  PMR-15 is one of the most frequently 

used high-temperature thermoset polyimides today.  

While thermoset polyimides are capable of operating at elevated temperature it has been 

found that their material properties are generally temperature dependent.  For example, PMR-15 
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exhibits nearly glassy behavior at low to moderate temperature (25 °C to 230°C) and large inelastic 

deformations at higher temperatures (260 °C to 316°C)  [10, 25, 29].  The property changes 

experienced by matrix materials at elevated temperature must be considered in the design process to 

make efficient and safe use of polymer matrix composites. 

Polymer Aging 

 Over time polymers experience changes in material properties due to multiple causes.  

Many polymers experience degradation of bonds due to exposure to chemically reactive 

environments [5], material deformation [19], and thermal degradation [19, 23].  Because 

degradation or “aging” occurs due to multiple factors it is important to define these terms.  For 

the present work the following definitions will be used: 

 Strain aging: mechanical property or material behavior changes caused by deformation [23] 

 Prior thermal aging: mechanical property/behavior changes induced by exposure to 

elevated temperature prior to deformation [23] 

 Polymers experience degradation due to prior thermal aging when their covalent bonds 

begin to break down. This results in polymer chain scission and additional cross linking between 

chains.  These processes typically occur very rapidly at temperatures above the glass transition 

temperature, but can also occur at lower temperatures although at a slower rate [4, 6].   These 

effects should not be neglected as degradation even below the glass transition temperature has 

been shown to result in a significant change in the material properties [4, 6, 10, 25,29].   

 Because changes in material properties occur due to multiple factors it becomes 

necessary to understand how material properties are affected by each individual variable before 
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evaluating the synergistic effect of several variables.  It is recognized that materials subjected to 

long-term exposures at elevated temperatures will be affected by the exposure temperature as 

well as by the exposure duration. Therefore to produce safe and efficient designs we must 

understand the changes caused by both prior aging duration and prior aging temperature before 

we are able to fully understand the synergistic effect of these two factors. 

Previous Research:  Experimental Investigations 

PMR-15 – Mechanical Behavior  

The behavior of PMR-15 has been studied both at ambient and elevated temperatures.  

Because the focus of this research centers on behavior at elevated temperature only research 

performed at elevated temperature will be reviewed.  

PMR-15 - Mechanical Behavior at 288 °C 

Westberry investigated the time-dependent material behavior of PMR-15 at 288 °C. 

While performing tests in load control she found that PMR-15 at 288 °C exhibited pronounced 

dependence on prior stress rate in both creep and recovery tests.  She concluded that to 

accurately model the behavior of PMR-15 under these conditions it is necessary to employ rate-

dependent constitutive equations [33].  Falcone also conducted load control testing of PMR-15 at 

288 °C.  She similarly concluded that to accurately model creep, relaxation, and monotonic 

loading and unloading a rate dependent model was needed [11, 12]. The dependence of creep 

response on prior loading rate is illustrated in Figure 2.1 and the rate dependence on loading and 

unloading behavior is illustrated in Figure 2.2. 
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Figure 2.1:  Creep Behavior of PMR-15 Following Stress Controlled Loading at 288 °C.  
Reproduced from Falcone [12]. 

 

Figure 2.2:  Loading and Unloading of PMR-15 at 288 °C.  The Influence of Load Rate is 
Readily Apparent. Reproduced from Falcone [11]. 
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McClung performed testing of PMR-15 at 288 °C under strain control.  While testing at 

strain rates between 10-3 and 10-6 s-1 she made the following observations [25, 26, 27]: 

1. Upon initial loading the material exhibits a linear quasi-elastic stress-strain behavior, 

which transitions to the region of inelastic deformation characterized by the tangent 

modulus. 

2. PMR-15 exhibits nonlinear strain rate sensitivity in monotonic loading.  Flow stress 

increases nonlinearly with increasing load rate. 

3. Once the plastic flow is fully established, a unique stress-strain curve is obtained for a 

given strain rate.  PMR-15 exhibits no strain rate history effect. 

4. Strain recovery is strongly influenced by prior strain rate. 

5. Creep behavior is strongly influenced by prior strain rate.   

6. Relaxation behavior is strongly influenced by prior strain rate.  Stress drop during 

relaxation is independent of stress and strain at the beginning of relaxation.  Stress drop 

during relaxation depends only on time and on prior strain rate. 

PMR-15 – Mechanical Behavior at 316 °C 

Ozmen performed testing on PMR-15 at 316 °C in strain control at strain rates between 

10-3 and 10-6 s-1.  Experimental observations made at 316 °C were similar to those made for 

PMR-15 at 288 °C [28, 29]: 

1. At 316 °C PMR-15 exhibits positive nonlinear strain rate sensitivity in monotonic 

loading and unloading.  The flow stress region is not achieved at the faster strain rates 

due to early failures.  The flow stress level increases with strain rate. 
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2. At 316 °C PMR-15 exhibits no strain rate history effect. 

3. Strain recovery of PMR-15 at 316°C is strongly influenced by prior strain rate.  The 

recovery rate increases with prior strain rate. 

4. Creep behavior is strongly influenced by prior strain rate.  Creep rate increases with prior 

strain rate. 

5. Relaxation behavior is strongly influenced by prior strain rate.  The existence of an 

equilibrium stress curve is suggested. 

PMR-15 – Mechanical Behavior at 260 °C 

To better understand changes in the behavior of PMR-15 at temperatures below the 

maximum operating temperature Diedrick performed testing at 260 °C in strain control at strain 

rates between 10-3 and 10-6 s-1. Diedrick observed the following key features of the deformation 

behavior at 260°C [10]: 

1. Linear, quasi-elastic behavior upon initial loading. 

2. Strain rate sensitivity in monotonic loading.  The flow stress increases nonlinearly with 

increasing strain rate.  A unique stress-strain curve exists for a given strain rate. 

3. Fully established inelastic flow is almost never reached due to early failures. 

4. Prior strain rate significantly affects recovery of strain.  Recovery rate increases with 

prior strain rate. 

5. Creep response is strongly affected by prior strain rate.  An increase in prior strain rate 

results in an increase in creep strain accumulation. 

6. Relaxation behavior is influenced by prior strain rate.  Higher prior strain rates result in 

larger stress drops during relaxation. 
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Prior Aging – Effects on Mechanical Behavior 

 Many materials which operate at elevated temperature are exposed to those elevated 

temperatures for prolonged periods of time. It thus becomes necessary to understand how long-

term exposure to elevated temperature affects the mechanical behavior of the material.  Changes 

due to prior isothermal aging must be isolated from other effects to accurately understand and 

model the material behavior. 

PMR-15- Effect of Prior Aging in Argon at 288 °C 

To isolate the effects of prior isothermal aging from degradation caused by exposure in 

an oxidizing environment Broeckert tested specimens previously exposed to elevated 

temperature in both oxidizing (air) and inert (argon) environments [5]. It was concluded that 

significant material degradation occurs due to oxidation but that this degradation is limited to a 

thin layer on the exposed surface of the material.  Broeckert also concluded that prior isothermal 

aging in an inert environment results in an increase of the elastic modulus, a decrease in the 

material’s ability to accumulate inelastic strain, and an increase in the glass transition temperature.  

The effects of prior isothermal aging are seen in the creep response as illustrated in Figure 2.3. 

 
Figure 2.3:  Creep Behavior at 20 MPa and 288 °C for PMR-15 Aged at 288 °C in Argon.  

Reproduced from Broeckert [5]. 
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Subsequent to Broeckert’s investigation, research at AFIT has focused on isolating the 

effects of prior isothermal aging. Hence all elevated temperature aging has been performed in an 

argon environment. In addition to work with unaged specimens McClung investigated 

deformation behaviors of PMR-15 specimens aged in argon at 288 °C for durations varying 

between 100 and 2000 hours [27].  McClung noted that prior isothermal aging resulted in the 

following changes in material response: the elastic modulus increased with increasing aging 

time, the tangent modulus increased with increasing aging time, the flow stress increased with 

increasing aging time, and departure from quasi-linear behavior was delayed. These effects of 

prior isothermal aging are illustrated in Figure 2.4 which shows the tensile stress-strain curves 

obtained for specimens loaded at a constant strain rate of 10-6 s-1 at  288 °C [27].  

 

Figure 2.4:  Stress-Strain Curves for PMR-15 Aged in Argon at 288 °C subjected to 
Tension to Failure Tests at a Strain Rate of 10-6 s-1. Reproduced from McClung [27]. 
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PMR-15- Effect of Prior Aging in Argon at 316 °C 

 Ozmen studied the effects of prior isothermal aging at 316 °C in an argon environment 

[29]. Ozmen noted that prior aging at 316 °C had the following effects on the material properties 

of the PMR-15 polymer: both the elastic modulus and the tangent modulus increased with 

increasing prior aging time [28].  Due to early failures it was difficult to determine the effects of 

prior aging on flow stress. These observations mirror those made for PMR-15 aged at 288 °C and 

are illustrated in Figure 2.5. Ozmen further noted that prior aging at 316 °C for durations over 

100 hours resulted in a decreased ductility and early failures [29]. 

 

Figure 2.5:  Stress-Strain Curves for PMR-15 Aged in Argon at 316 °C subjected to 
Tension to Failure Tests at a Strain Rate of 10-6 s-1. Reproduced from Ozmen [28]. 
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PMR-15- Effect of Prior Aging in Argon at 260°C 

Diedrick exposed PMR-15 specimens to an argon environment at 260 °C for durations 

varying between 50 and 2000 hours [10], then tested the aged specimens at 260°C. Some of the 

experimental results obtained by Diedrick are shown in Figure 2.6. Very few of the specimens 

entered the flow stress region due to the relatively low test temperature. The effects of prior 

isothermal aging were less pronounced, but the following trends were still observed: 

1. Increase in modulus of elasticity with increase in prior aging time 

2. Increased brittleness with increase in prior aging time 

3. Decreased strain accumulation in creep with increase in prior aging time 

 

Figure 2.6:  Stress-Strain Curves for PMR-15 Aged in Argon at 260 °C subjected to 
Tension to Failure Tests at a Strain Rate of 10-6 s-1.  Reproduced from Diedrick [10]. 
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 The following observations were reported for all prior aging temperatures [10]: The 

modulus of elasticity increased with prior aging time, increase in aging time results in an 

increasingly brittle response.  It may be conjectured that if specimens aged and tested at 260 °C and 

at 316 °C had not experienced early failures they would likewise have demonstrated an increase in 

flow stress and in tangent modulus with increased aging duration. 

Previous Research:  Constitutive Modeling 

Viscoelastic Modeling 

Initial attempts to model the behavior of PMR-15 at elevated temperature employed 

Schapery’s viscoelastic model [31].  Schapery’s model has become widely used because of the 

existence of a systematic material characterization procedure and the models capability to 

represent many material behaviors [31].  Falcone found that Schapery’s model did not 

adequately represent the rate-dependent aspects of the material behavior observed for PMR-15 

[11, 12] as illustrated in Figure 2.7. 

 
Figure 2.7:  Loading and Unloading at a Constant Stress Rate for Unaged PMR-15 at 288 

°C Experimentation and the Schapery’s Model.  Reproduced from Falcone [12]. 
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Viscoplasticity Based on Overstress 

 Because a viscoelastic model was unable to accurately represent the behavior of PMR-15 

at elevated temperature McClung decided to employ a viscoplastic model [27].  One key 

difference between viscoelastic and viscoplastic models is the capability of the viscoplastic 

model to account for permanent or plastic strain. This difference is shown in Figure 2.8 which 

depicts loading and unloading behavior followed by a period of recovery.  Viscoelastic models 

predict recovery of all strain if given a sufficient amount of time.  However, viscoplastic models 

predict the existence of permanent plastic strain which will not be recovered regardless of how 

long the material held at zero load. In addition, the viscoplastic models are capable of accounting 

for the effects of loading rate on the inelastic deformation behavior.  

 

Figure 2.8:  Schematic of Viscoelastic (a) and Viscoplastic (b) Behavior Exhibited in 
Loading and Unloading Followed by Recovery. Reproduced from McClung [25]. 
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After considering various models McClung selected Viscoplasticity Based on Overstress 

(VBO) to represent the inelastic behavior of PMR-15 at 288 °C.  This model was developed by 

Krempl and colleagues [20]. VBO is based on overstress and thus employs the concept of 

equilibrium stress. Equilibrium stress is the state of stress that would exist in a material if the 

loading rate was allowed to approach zero.  Overstress is the amount of applied stress in excess 

of the equilibrium stress. These concepts are schematically depicted in Figure 2.9. VBO also 

predicts material behavior that is rate dependent as illustrated in Figure 2.9, which shows that 

distinct loading curves will exist for the same material loaded at different rates.  We may also 

note the flow stress region in this same figure.  Flow stress is observed for the portion of the 

stress-strain curve at large strain.  In this region the slope of the stress strain curves becomes 

nearly constant.  Within the VBO model the slope of the stress-strain curves at large strain is 

referred to as the tangent modulus.  Krempel defines flow stress as the “steady inelastic flow with 

a tangent modulus much smaller than the elastic modulus measured at the origin” [21] 

 
Figure 2.9:  Schematic Representation of Equilibrium and Overstress Concepts. 

Reproduced from Ozmen [29]. 
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 It has been postulated that material behavior may be represented by a constitutive 

equation dependent on overstress [7].  For Viscoplasticity Based on Overstress the uniaxial 

constitutive equation is given in the following form [18]:  

  ߳ሶ ൌ  ߳ሶ௘௟ ൅ ߳ሶ௜௡ ൌ  ఙሶ

ா
൅ ఙି௚

ா௞ሺఙି௚ሻ
 (2.1)  

In this equation σ is engineering stress, ߳ is engineering strain, ߳௘௟is elastic strain, ߳௜௡is inelastic 

strain, E is the elastic modulus.  The viscosity function, which governs rate dependence, is 

denoted as k.  Equilibrium stress, the theoretical stress that would be present if all rates 

approached zero is denoted as ݃.  Brackets represent “function of” and the quantity (ߪ െ ݃) 

represents the stress in excess of the equilibrium stress and is called the overstress. A detailed 

discussion of the mathematical formulation of the VBO is given in chapter 3. 

Viscoplasticity Based on Overstress for Polymers 

 VBO was originally created to model the behavior of engineering alloys and was shown 

to be capable of representing many of the observed behaviors.  The merits of this model in 

representing the behaviors of SAE 1020, HY-80, and Aer-Met steels as well as those of 

tantalum-titanium alloys was demonstrated by Krempl [21].  However, VBO was not able to 

adequately represent all of the material behavior observed for some polymers. These polymers 

exhibited high relaxation rates, increased strain recovery after loading followed by unloading to 

zero stress,  curved unloading in stress control, reduced rate dependence during unloading, 

merging of the stress-strain curves produced at different strain rates, and relaxation or creep rate 

reversal (change of sign of stress rate during relaxation or strain rate during creep) on unloading 

[2, 3, 17]. To account for these behaviors Ho introduced Viscoplasticity Based on Overstress for 
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Polymers (VBOP) [13]. It was demonstrated that VBOP predicted the behavior of various 

polymers better than the standard VBO [13, 17, 27]. 

 McClung tested PMR-15 at 288 °C and observed behaviors, as noted earlier in this 

chapter, which led her to select VBOP to model the deformation behavior this material [27]. 

Additionally, she developed a systematic characterization procedure for VBOP and applied that 

procedure to the experimental data obtained for PMR-15 at 288 °C. McClung was able to 

accurately model the material behavior (1) for several loading scenarios used for model 

characterization (tension to failure, relaxation) and (2) for loading histories used for model 

validation (load unload followed by recovery, creep, strain rate jump test). Figure 2.10 clearly 

shows that the model predicts rate-dependence of tensile stress-strain behavior. Furthermore, 

predictions compare well with the experimental data.  

 

Figure 2.10:  Stress-Strain Behavior of Unaged PMR-15 at 288 °C in Monotonic Tension to 
Failure Tests Described by Experimentation and VBOP.  Reproduced from McClung [25]. 
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Relaxation behavior is also modeled well by VBOP (see Figure 2.11). 

 

Figure 2.11:  Relaxation Behavior of Unaged PMR-15 at 288 °C Described by 
Experimentation and the VBOP.  Reproduced from McClung [25]. 

Figure 2.12 shows that the model accurately predicts the stress-strain behavior produced in a 

strain rate jump tests. 

 

Figure 2.12:  Stress-Strain Behavior of Unaged PMR-15 at 288 °C in the Strain Rate Jump 
Test Described by Experimentation and the VBOP.  Reproduced from McClung [25]. 
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 The capacity of VBOP to model curved unloading is demonstrated in Figure 2.13. 

 

Figure 2.13:  Stress-Strain Behavior of Unaged PMR-15 at 288 °C in Loading Followed by 
Unloading Described by Experimentation and the VBOP.  Reproduced from McClung [25]. 

 

McClung also notes the aptitude of VBOP to model the effects of prior strain rate on creep 

behavior as depicted in Figure 2.14. 

 

Figure 2.14:  Creep Behavior of Unaged PMR-15 at 288 °C Described by Experimentation 
and the VBOP.  Reproduced from McClung [25]. 



 

22 

 

Following the procedure established by McClung [27], Ozmen characterized the VBO 

model parameters to represent the behavior of PMR-15 at 316 °C [28, 29]. Ozmen used creep, 

load-unload, and strain rate jump test histories to validate the model.  Comparisons of the 

experimental results with model predictions are shown in Figure 2.15 through Figure 2.17. 

 

Figure 2.15:  Creep Behavior of Unaged PMR-15 at 316 °C. Experimental results and 
VBOP model predictions.  Reproduced from Ozmen[29]. 

 

Figure 2.16:  Stress-Strain Behavior of Unaged PMR-15 at 316 °C in Loading and 
Unloading Tests. Experimental results and VBOP model predictions. Reproduced from 

Ozmen [29]. 
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Figure 2.17:  Stress-Strain Behavior of Unaged PMR-15 at 316 °C in the Strain Rate Jump 
Test. Experimental results and VBOP model predictions.  Reproduced from Ozmen [29]. 

Diedrick also modeled the behavior of PMR-15 at 260 °C using VBOP.  To characterize 

the model he followed the procedures established by McClung employing tension to failure and 

relaxation tests. Modeling of the deformation behavior produced at this temperature became 

difficult because very few specimens entered the flow stress region.  It has been proposed that 

the deformation behavior of PMR-15 at this temperature is outside of the domain of validity for 

VBOP, and that simpler models may be able to adequately represent the material behavior.  

Results of Diedrick’s testing and modeling are shown in Figure 2.18 through Figure 2.20 
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 Figure 2.18:  Creep Behavior of Unaged PMR-15 at 260 °C. Experimental results and 
VBOP model predictions.  Reproduced from Diedrick[10]. 

 

Figure 2.19:  Stress-Strain Behavior of Unaged PMR-15 at 260 °C in Loading Followed by 
Unloading. Experimental results and VBOP model predictions.  Reproduced from Diedrick 

[10]. 
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Figure 2.20:  Stress-Strain Behavior of Unaged PMR-15 at 260 °C in the Strain Rate Jump 
Test. Experimental results and VBOP model predictions.  Reproduced from Diedrick [10]. 

 

Viscoplasticity Based on Overstress for Polymers with Prior Aging 

It is recognized that polymer deformation behavior changes with prior isothermal aging. 

McClung analyzed such changes and developed an analytical capability within the VBOP model 

to represent the effects of prior aging time on the deformation behavior.  As noted previously 

McClung observed that prior aging has the following effects on the deformation behavior [27]:  

1. Initial slope of stress-strain curve increases with prior aging time. 

2. Final slope of stress-strain curve increases with prior aging time. 

3. Flow stress increases with prior aging time. 

4. Departure from quasi-linear behavior is delayed with prior aging time. 
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McClung modeled the aforementioned effects of prior aging on deformation behavior in VBOP 

by expanding the following model parameters into functions of prior aging time [27]: 

1. Elastic modulus, E 

2. Tangent modulus, Et. 

3. Isotropic stress, A. 

4. Shape parameter, C2. 

McClung used the data collected for specimens aged at 288 °C for durations varying between 

0 and 1000 hours to establish these model parameters as functions of aging duration. It was 

found that power law functions were well suited for this purpose.  The developed power law 

relationships were used to predict the material behavior of PMR-15 aged at 288 °C for 2000 

hours.  Figure 2.21 and Figure 2.22 demonstrate the ability of the VBOP with the model 

parameters   established as functions of prior aging time to accurately predict the material 

behavior of specimen aged for 2000 hours. 
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Figure 2.21:  Comparison Between Experimental and Predicted Stress-Strain Curves 
Obtained in Tensile Test for PMR-15 Aged at 288 °C for 2000 h. Reproduced from 

McClung [27]. 

 

Figure 2.22:  Comparison Between Experimental and Predicted Creep Strain vs. Time 
Curves Obtained at 21 MPa for PMR-15 Aged at 288 °C for 2000 h. Reproduced from 

McClung [27]. 
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 Using the power law form proposed by McClung, Diedrick made the VBOP model 

parameters dependent on the duration of prior aging at 260 °C.  Diedrick used test data obtained 

for specimen aged for 0, 100, and 200 hours to expand the model parameters as functions of 

prior aging time. The augmented VBOP was employed to predict material behavior for specimen 

aged at 260°C for 500, 1000, and 2000 hours. Results of this effort were mixed.  In the case of 

tension to failure tests, predictions agreed with experimental results reasonably well (see Figure 

2.23). However, in the case of relaxation and creep tests, predictions did not agree with 

experimental results equally well (see Figure 2.24 and Figure 2.25). 

 

Figure 2.23:  Experimental and Predicted Stress-Strain Curves Obtained in Monotonic 
Tension at 260 °C for PMR-15 Aged in Argon at 260 °C for 1000 h. Reproduced from 

Diedrick [10]. 
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Figure 2.24: A Comparison Between Experimental and Predicted Stress Drop vs. 
Relaxation Time Curves Obtained at 260 °C for the PMR-15 Polymer Aged in Argon at 

260 °C for 1000 h. Reproduced from Diedrick [10]. 

 

Figure 2.25: A Comparison Between Experimental and Predicted Creep Strain vs Time 
Curves Obtained at 25 MPa and at 260 °C for PMR-15 Polymer  Aged in Argon at 260 °C 

for 1000 h. Reproduced from Diedrick [10]. 
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3. Theoretical Formulation of Viscoplasticity Based on Overstress for Polymers 

 To predict the mechanical behavior of PMR-15 aged at 274 °C and tested at 288 °C a 

constitutive model must be selected.  The model which will be used in this research is 

Viscoplastisity Based on Overstress for Polymers (VBOP).  This is a unified constitutive model 

capable of representing many of the material behaviors exhibited by PMR-15. This chapter 

discusses the theoretical development of Viscoplasticity Based on Overstress including the 

model extension to account for the effects of prior aging. 

Basis of Viscoplasticity Based on Overstress – Standard Linear Solid 

 The origin of Viscoplasticity Based on Overstress (VBO) may be traced to the standard 

liner solid [22].  The Standard Linear Solid (SLS) consists of a linear spring connected in series 

with a Kelvin-Voigt element, which is composed of a linear spring and a linear dashpot. A 

schematic representation of the SLS is presented in Figure 3.1.  A key feature of SLS is that it is 

capable of representing both creep and relaxation [22]. 

 

Figure 3.1:  Standard Linear Solid. Reproduced From Falcone [12] 
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The SLS may be represented mathematically in the following standard form: 

  ߳ሶ ൅ ாమ

ఎ
߳ ൌ ఙሶ

ாభ
൅ ቀாభା ாమ

ாభ
ቁ ఙ

ఢ
  (3.1) 

In this constitutive equation strain is denoted by ߳, stress is denoted by σ, the elastic spring 

constants are E1 and E2, and the viscosity coefficient of the dashpot is denoted by η. 

Viscoplasticity Based on Overstress 

 It is convenient to rearrange the constitutive equation for the SLS by isolating the strain 

rate term on the left side of the equation.  This allows the division of the strain response into 

elastic ߳ሶ௘௟ and inelastic ߳ሶ௜௡ components. 

  ߳ሶ ൌ  ߳ሶ௘௟ ൅ ߳ሶ௜௡ ൌ  ఙሶ

ாభ
൅ ఙି௔ாమఢ

௔ఎ
 (3.2) 

where 

  ܽ ൌ ாభ

ாభାாమ
 (3.3) 

  The numerator of the inelastic component of the response, െܽܧଶ߳ , is called the 

overstress. The stress which the model would predict as all rates approach zero is called the 

equilibrium stress and is represented as ݃ where 

  ݃ ൌ  ଶ߳  (3.4)ܧܽ

 Making this substitution the constitutive equation for the standard linear solid in 

overstress form becomes: 

  ߳ሶ ൌ  ఙሶ

ாభ
൅ ఙି௚

௔ఎ
 (3.5) 
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The standard linear solid predicts different material responses for different applied loading rates. 

At an infinitely slow loading rate the model predicts behavior characteristic of the two springs in 

series as given by .  At an infinitely fast loading rate the dashpot is unable to produce a 

strain response and model behavior is governed only by E1. Thus elastic stress-strain behavior is 

produced. Intermediate loading rates produce responses which vary between these two bounds as 

depicted in Figure 3.2. 

 

Figure 3.2:  Schematic of SLS Response to Monotonic Loading. Reproduced From Krempl 

[22]. 

 In order to better represent material behavior it is desirable to replace the linear spring in 

the Kelvin-Voigt element E2 with a nonlinear function of strain and allow the viscosity of the 

dashpot to vary as a function of overstress incorporating the former constant  into this function 

[22].  To account for hysteretic behavior the equilibrium stress must be allowed to change and 

become a function of overstress [20].  

 The governing equation for VBO now becomes:   

   (3.6) 
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where ߳ሶ is the strain rate, E is the elastic modulus, ݃ is the equilibrium stress, and k is the 

viscosity function.  

The equilibrium stress is a function of overstress given as: 

  ሶ݃ ൌ Ψ ఙሶ

ா
൅ ஏ

ா
ቂఙି௚

௞
െ ௚ି௙

஺

ሺఙି௚ሻ

௞
ቃ ൅ ቀ1 െ ஏ

ா
ቁ ݂ሶ (3.7) 

where Ψ is the shape function, ݂ is the rate dependent or kinematic stress, and A is the rate 

independent or isotropic stress. 

 The viscosity function is dependent on overstress and is written as [20]: 

  ݇ ൌ ݇ଵ ቀ1 ൅
|ఙି௚|

௞మ
ቁ

ି௞య
  (3.8) 

where k1, k2, and k3 are material constants. 

 The isotropic stress A is the difference between the equilibrium stress ݃ and the 

kinematic stress ݂ in the region of fully established plastic flow.  Variation in isotropic stress is 

the repository for modeling cyclic work hardening or softening [14, 20].   

ሶܣ   ൌ ௙ܣ௖ൣܣ െ ൧ܣ ቚఙି௚

ா௞
ቚ (3.9) 

where Ac and Af are constants which control the rate of hardening (Ac) and represents the final 

value of A once saturation is reached (Af). 

 Kinematic or rate dependent stress ݂ governs the region of fully established inelastic flow 

as given by:   

  ݂ሶ ൌ ௧ܧ
ሺఙି௚ሻ

ா௞
  (3.10) 

This function includes the tangent modulus ܧ௧ which is defined as the slope of the stress-strain 

curve in region of fully established plastic flow. 
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 The shape function is responsible for modeling the transition from the initial quasi elastic 

behavior to fully established inelastic flow. The effect of the shape functions is most readily 

apparent in its influence on the shape of the “knee” of the stress strain diagram.  

  Ψ ൌ ଵܥ ൅ ሺܥଶ െ  ଵሻ݁ି஼యหఢ೔೙ห (3.11)ܥ

where the shape function parameters C1, C2, and C3 are material constants. 

 The VBO model does not produce a purely elastic response because inelastic strain, even 

if extremely small, is always present [20].  For this reason the model does not employ a yield 

surface.  There are several versions of VBO in existence which attempt to represent various 

material behaviors under specific conditions. However, all of these models employ a flow law 

and the state variables for equilibrium stress ݃, isotropic stress A, and kinematic stress ݂.  

Because PMR-15 (a high temperature polymer) is the material used in this research the VBO 

formulation known as Viscoplasticity Based on Overstress for Polymers (VBOP) has been 

selected.   

Viscoplasticity Based on Overstress for Polymers 

 Bordonaro and Krempl observed that some polymer deformation behaviors were not 

adequately modeled by the standard VBO [2, 3]. In order to represent these behaviors Ho and 

Krempl formulated VBOP [13].  VBOP was subsequently used to model the deformation 

behaviors of various polymers including PMR-15 [27].  The governing equation of VBOP retains 

the same form as that of the VBO:  

  ߳ሶ ൌ ఙሶ

ா
൅ ఙି௚

ா௞
  (3.12) 
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The evolution of equilibrium stress ݃ is modified by the addition of the term dependent on 

overstress rate, 
ஏ

ா
ሺߪሶ െ ሶ݃ሻ݊.  This term influences equilibrium stress which in turn alters the 

relaxation rate. With the addition of this term the growth law for equilibrium stress becomes:  

  ሶ݃ ൌ Ψ ఙሶ

ா
൅ ஏ

ா
ቂఙି௚

௞
െ ௚ି௙

஺

ሺఙି௚ሻ

௞
൅ ሺߪሶ െ ሶ݃ሻ݊ቃ ൅ ቀ1 െ ஏ

ா
ቁ ݂ሶ (3.13) 

Here ݊ is a material constant which controls relaxation rate and varies from 0 to 1.  McClung 

found that setting ݊=0 produced optimal results for PMR-15.  Following McClung, this research 

uses a value of ݊=0, returning the growth law for equilibrium stress to the form given in 

Equation 3.7. 

 The viscosity function for polymers is modified as follows: 

  ݇ ൌ ݇ଵ ൤1 ൅ ൬1 ൅ ஺బି஺

஺బି஺೑
൰

୻

௞మ
൨

ି௞య

 (3.14) 

where 

  Γ ൌ ߪ|  െ ݃| (3.15) 

and A0 is the initial value of isotropic stress and Af is the final value of isotropic stress.  The 

addition of these terms allows the stress-strain curves produced at various rates to merge. 

 The evolution equation for the isotropic stress remains the same as in the standard VBO: 

ሶܣ   ൌ ௙ܣ௖ൣܣ െ ൧ܣ ቚఙି௚

ா௞
ቚ (3.16) 

 For a cyclically neutral material AC=0 which results in A=const.  Near cyclically neutral 

behavior has been reported for various polymers and A=const has been used to effectively model 

their behavior [15, 17]. McClung assumed that PMR-15 at 288 °C was also a cyclically neutral 

material and has demonstrated that a constant value of isotropic stress produced acceptable 
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results [27]. If cyclically neutral behavior is assumed the viscosity function for VBOP is the 

same as the viscosity function for VBO, as given in Equation 3.8. 

 For VBOP the evolution of the kinematic stress is modified to take the form: 

  ݂ሶ ൌ ቀ
|ఙ|

୻ା|௚|
ቁ ௧ܧ

ሺఙି௚ሻ

ா௞
  (3.19) 

 This is different than the formulation used for standard VBO in its addition of the term ቀ
|ఙ|

୻ା|௚|
ቁ, 

which was introduced to model increased strain recovery at zero stress. McClung determined that 

including this term improved the ability of VBOP to accurately represent the behavior of PMR-

15 at 288 °C [27].  

 For VBOP the shape function takes the form: 

  Ψ ൌ ଵܥ
כ ൅ ሺܥଶ െ ଵܥ

 ሻ݁ି஼యหఢ೔೙ห (3.17)כ

where 

ଵܥ  
כ ൌ ଵܥ ቂ1 ൅ ସܥ ቀ

|௚|

஺ା|௙|ା୻మቁቃ (3.18) 

C1, C2, C3 , and C4 are material constants and ܥଵ
 is a function of equilibrium stress, isotropic כ

stress, kinematic stress, and overstress.  McClung observed that for PMR-15 at 288 °C the shape 

function given in the standard VBO formulation produced more accurate results than this 

modified shape function [27].  Based on McClung’s finding the shape function given in Equation 

3.11 will be used for this research. Note that that this is equivalent to setting the constant C4=0 in 

equation (3.18). 

 Previous research has found that VBOP is capable of accurately representing many of the 

behaviors exhibited by PMR-15 at elevated temperature [10, 27, 28, 29].  A summary of the 

VBOP formulation used in this research is as follows: 
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Uniaxial Flow Law 

  ߳ሶ ൌ  ߳ሶ௘௟ ൅ ߳ሶ௜௡ ൌ  ఙሶ

ா
൅ ఙି௚

ா௞
 (3.20) 

Evolution of Equilibrium Stress 

  ሶ݃ ൌ Ψ ఙሶ

ா
൅ ஏ

ா
ቂఙି௚

௞
െ ௚ି௙

஺
ቚ

ሺఙି௚ሻ

௞
ቚቃ ൅ ቀ1 െ ஏ

ா
ቁ ݂ሶ (3.21) 

Evolution of Kinematic Stress 

  ݂ሶ ൌ ቀ
|ఙ|

୻ା|௚|
ቁ ௧ܧ

ሺఙି௚ሻ

ா௞
  (3.22) 

Shape Function 
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where the stress invariant is defined as 

  Γ ൌ ߪ|  െ ݃| (3.25) 

and A is assumed to be constant.  The key difference between VBOP as used in this research and 

the standard VBO formulation is the inclusion of the term ቀ
|ఙ|

୻ା|௚|
ቁ in the evolution of the 

kinematic stress. 

Extension of VBOP to Account for Effects of Prior Aging Time 

 McClung modified the VBOP by adding the capability to account for changes in 

deformation behavior due to prior isothermal aging [27].  It was found that some model 

parameters varied with prior aging duration and could be modeled as functions of prior aging 

time using power law relationships.  The elastic modulus, E, tangent modulus, Et, isotropic 
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stress, A, and the shape function parameter, C2, were developed as functions of prior aging time. 

These relationships do not change the established formulation of VBOP, but instead add the 

analytical capability to predict model parameters for aging durations not investigated 

experimentally. 
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4. Material and Test Specimen 

This section discussed the material studied during this research, the test specimen geometry, and 

test specimen preparation. 

PMR-15 (Polymerization of Monomeric Reactants – 15) Solid Polymer 

 The material selected for this research was PMR-15 which was developed by the NASA 

Lewis Research Center in the 1970’s.  It has a long term use temperature of 288°C and a glass 

transition temperature Tg between 331°C [6] and 347°C [4].  PMR-15 is a widely used matrix 

material for high temperature polymer matrix composites and has become the “leading polymer 

matrix resin for carbon-fiber-reinforced composites used in aircraft engines” [8].  The PMR-15 neat 

resin panels were supplied and postcured by HyComp Inc. (Cleveland, OH). The details of the free-

standing postcure cycle are shown in Table 4-1. Panels were cut into 152 mm x 23 mm 

rectangular blanks and delivered to AFIT.   

Table 4-1: Freestanding PostCure Cycle 

Step Description 

1 Heat to 204 °C in 2 h and hold for 1 h 

2 Heat to 260 °C in 1 h and hold for 1 h 

3 Heat to 316 °C in 2 h and hold for 16 h 

4 Cool to room temperature at a rate of 1 °C/min 
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Figure 4.1:  Nominal Test Specimen Geometry 

Specimen Geometry 

 In order to ensure failure occurred within the gage section of the test specimen, standard 

dogbone-shaped specimens shown in Figure 4.1 were employed in this research effort Specimen 

thickness varied between 2.85mm and 4.38 mm with an average thickness of 3.70 mm. 

Specimen Preparation 

 Upon receipt of the material each blank was visually inspected for uniformity and 

absence of defects.  Test specimens were machined to specifications in Figure 4.1 using diamond 

grinding in order to minimize surface defects [6].  Some of the material was left as rectangular 

blanks and used to assess the weight loss due to aging. The test specimens and the rectangular 

blanks were washed in a solution consisting of 2% micro 90 soap and distilled water,  then dried 

in a Isotemp Model 282A vacuum oven at 105° at a pressure of 6 kPa. Due to space constraints 

the drying was accomplished in two batches.  A sample group from each batch was periodically 

weighed to determine when they were “dry.”  Each batch’s weight loss stabilized in less than 10 
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days as shown in shown in Figure 4.2, at which time the specimens and the blanks were removed 

from the drying oven and stored at room temperature in a desiccator maintained at about 10% 

relative humidity.   

 

Figure 4.2:  Specimen Weight Loss during Drying 

In order to mount the extensometer on the specimen and avoid slippage, two small 

dimples were made in each specimen using a hammer and a punch provided by Material Test 

Systems (MTS).  Dimple depth was kept to a minimum to avoid fracture initiation at the dimple. 

To avert slipping and to prevent the textured surface of the griping wedges from damaging the 

specimen small fiberglass tabs were bonded to the gripping portion of each specimen using M-

bond 200, a room temperature cure epoxy.   
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5. Experimental Setup and Testing Procedures 

 This section describes the mechanical testing equipment and the test procedures used in 

this research.   

Mechanical Testing Equipment 

Room temperature modulus measurements were carried out on a vertically configured 

model 810 MTS servo-hydraulic testing machinewith a 15 kN (3.3 kip) load cell with .  MTS 

hydraulic wedge grips, model 647.02B, were used with a grip pressure of 8 MPa.  Strain was 

measured using an MTS model 632.53E-14 serial number 10184989B axial extensometer with a 

12.5-mm gage section. 

Elevated-temperature testing was performed on a vertically configured model 810 MTS 

servo-hydraulic testing machine with a 25 kN (5.5 kip) load cell.  MTS hydraulic water-cooled 

wedge grips, model 647.02, were used with a grip pressure of 8 MPa.  These grips were continuously 

cooled with 15°C water supplied by a Neslab RTE7chiller.  A two zone MTS 653 furnace and MTS 

409.83 Temperature Controllers were used for elevated temperature testing . Strain was measured 

using an MTS high-temperature low contact force axial extensometer, model 632.53E-14, with a 

12.7-mm gage section The 25 kN (5.5 kip) hydraulic testing machine, furnace, and extensometer 

are depicted in Figure 5.1. 
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Figure 5.1:  Mechanical Test Equipment Setup 

Data acquisition and input signal generation were accomplished via a Flex Test 40 digital 

controller.  MTS station builder release 5.2B was used to create a configuration file and the 

station manager interface was used to perform routine operations.  This software enables the 

development of procedures which will both run the desired test and save requested data.  The 

following signals were recorded for each test: time, zone 1 temperature, zone 2 temperature, 

displacement, force, strain, and the commanded.   Timed data acquisition was carried out at rates 

sufficient to ensure that desired behavior was appropriately captured and later filtering could be 

performed to reduce signal noise.   
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Temperature Calibration and Controller Tuning 

Temperature Calibration 

In order to determine the temperature controller settings required to obtain a specimen 

temperature of 288°C a specimen was instrumented with two type K thermocouples.  One 

thermocouple was attached to each side of the specimen using high temperature gasket material 

and was held firmly against the specimen with a piece of metallic wire separated from the 

specimen by a piece of high temperature insulation as illustrated in the cross section view shown 

in Figure 5.2.  The size of the gasket material and insulation were kept as small as possible in 

order to minimize the area where the specimen was not directly exposed to heat.  This mounting 

technique provides good contact between the thermocouple and the specimen.    

 

Figure 5.2:  Thermocouple Mounting Schematic (Only Right Side Shown) 
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The temperature controller settings were adjusted until the desired temperature was 

obtained on the specimen.  A temperature controller set point of 257°C was found to produce a 

specimen temperature of 288°C.  It was also found that the ~3°C temperature overshoot had 

dissipated and thermal strain had stabilized in less than 45 minutes. The determined temperature 

controller settings were validated by allowing the furnace to cool to room temperature, 

increasing the temperature controller set point to 257°C at the rate of 2°C/min, then holding the 

temperature constant.  Temperature was checked 45 later minutes then held constant for an 

additional 3 hours.  It was found that the furnace maintained a specimen temperature of 288°C 

±2°C during the three hours over which temperature was monitored.  Thermal strain accumulated 

between room temperature and 288°C was found to be approximately 1.5% which is consistent 

with previous research [6, 12]. 

Tuning of the Flex Test 40 Digital Controller 

Prior to testing the Flex Test 40 digital controller had to be adjusted for the PMR-15 test 

specimens. This calibration process is called “tuning”. Tuning involves minimizing the error 

between the command signal and the feedback signal. Initial tuning for the displacement control 

mode was performed using the controller auto tune function. As a result the following gain values 

were established: Proportional (P)=36.273 and Integral (I)=7.255.  These gain values were verified 

by using the function generator in Flex Text 40 and specifying a square wave form with 5-mm 

amplitude and a frequency ranging from 0.1 to 1.0 Hz for the command signal.  The selected values 

of P and I gains produced a good agreement between the command and feedback signals. Next the 

force control mode was tuned using an aluminum alloy specimen at room temperature and a square 

wave form of 1.3kN ±1.1kN at frequencies between 0.1 and 1 Hz for the command signal. The gain 
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values P = 6.2 and I = 3.0 were found to give good results.   Finally the strain control mode was 

tuned using an aluminum alloy specimen and a sinusoidal wave form of 0.5% ± 0.2% strain.  The 

gain values P = 2100 and I = 21 produced good results. 

Once rough tuning had been accomplished on an aluminum alloy specimen at room 

temperature, final tuning using a PMR-15 specimen was carried out.  The gain settings determined 

with the aluminum alloy specimen produced good results at room temperature.  Further tuning of 

the load and strain control modes was performed using a PMR-15 specimen at 288°C.  Tuning of 

the load control mode was performed using the auto tune function for a load varying between 

350 N and 50 N, yielding the gain values P = 32.139 and I = 6.4279.  These gain values were 

verified using the function generator and a square wave of 200N ±150N at frequencies between 0.1 

and 1 Hz.  The strain control mode was also tuned manually using the function generator and a 

sinusoidal wave form of 0.5% ± 0.3% strain at frequencies between 0.1 and 1 Hz.  The gain values P 

= 2400 and I = 400 were found to produce good agreement between the command and the feedback 

signals. These gain settings were further verified using the function generator and a triangular wave 

form of 0.5% ± 0.3% strain at frequencies up to 1.0 Hz.  

Isothermal Aging in Argon 

All specimens used in this research were aged at 274°C in argon in a Blue M model 7780 

oven.  High purity argon gas (99.999% pure) was supplied to the Blue M oven from a liquid argon tank. 

When specimens were taken out for periodic inspection and/or testing, the oven was opened without 

cooling and closed immediately. Then the oven automatically entered the 28-min purge cycle to flush out 

any ambient air that had entered the chamber. The flow rate of argon was ~30 SCFH during the steady 

state operation and 150 SCFH during the purge cycle. Once specimens were removed from the Blue 
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M oven they were stored in the desiccator to prevent moisture absorption.  In previous research 

efforts the aging temperature was the same as the test temperature. McClung aged and tested 

PMR-15 specimens at 288°C [25, 26, 27]. Ozmen investigated the aging/test temperature of 

316°C [28, 29] and Diedrick considered the aging/test temperature of 260°C [10]. McClung [25, 

26, 27], Ozmen [28, 29] and Diedrick [10] focused on exploring the effects of prior aging time 

on deformation behavior of the PMR-15 polymer at elevated temperature. The current research 

aims to assess the effect of prior aging temperature on the inelastic behavior of PMR-15.  

Therefore in this effort, the PMR-15 specimens were aged at 274°C then tested at 288°C. A 

group of specimens was aged at 274°C for each of the following durations: 50, 100, 250, 500, 

1000 and 2000 h. 

Weight Measurements 

 Five rectangular samples were included with each group of test specimens aged for a 

given duration with the purpose of monitoring weight change with aging time. The aged 

rectangular samples were removed from the oven, allowed to cool in the desiccator for at least 20 

minutes, then weighed on a Voyager Pro VP214CN scale with an accuracy of 0.1 mg.   

Mechanical Test Procedures 

Room Temperature Elastic Modulus Measurements  

To assess specimen-to-specimen variability room temperature elastic modulus of each 

specimen was measured by loading the specimen to a stress of 3 MPa at a stress rate of 1 MPa/s 

then unloading to zero stress at the same stress rate magnitude.  These measurements were 
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performed on the 15 kN (3.3 kip) load frame.  Previous research has shown that stress levels 

below 3 MPa produce nearly linear response and do not result in permanent strain [6].   

Monotonic Tensile Test at Constant Strain Rate 

 Monotonic tensile tests to failure were conducted at 288°C and at constant strain rates of 

10-3, 10-4, 10-5, and 10-6 s-1.  Specimens from each aging group were tested. Results from these 

tests provided information needed to establish the initial “elastic” modulus, tangent modulus, and 

flow stress.  These tests further served to inform the decision as to the strain level which would 

be selected for use in the load/unload, relaxation, and strain rate jump tests and the stress level 

selected for the creep tests.  Testing at various constant strain rates allows the rate dependence of 

the material response to be evaluated.  Typical strain rate dependence is schematically illustrated 

in Figure 5.3. 

 

Figure 5.3:  Schematic of a Set of Monotonic Tensile Tests at Various Strain Rates. 
Reproduced from McClung [27]  
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Constant Strain Rate Test with a Period of Relaxation 

 Specimens from each aging group were subjected to monotonic tension tests with a 12-h 

period of relaxation at the strain of 3%. These tests were conducted at constant strain rates of   

10-3, 10-4, 10-5, and 10-6 s-1.  Previous research has shown that a 12-h relaxation period is 

sufficiently long to allow stress to approach the asymptotic value [10, 27, 28].  Following the 

relaxation period the specimens were loaded to failure at the same constant strain rate.  Within 

the framework of the VBOP the stress level measured at the end of a sufficiently long relaxation 

period is at the equilibrium stress.  The results of these tests provide the data necessary to 

estimate the equilibrium stress at a given strain. A depiction of stress drop during relaxation is 

shown in Figure 5.4. 

 

Figure 5.4:  Stress Decrease vs. Relaxation Time for the Un-aged PMR-15 at 260 °C. 
Reproduced from Diedrick [10] 
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Loading / Unloading Test at Constant Strain Rate 

 Specimens from each aging group were also subjected to loading at a constant strain rate 

to the strain of 3% followed by unloading to zero stress at the same strain rate magnitude.  

Loading and unloading were performed at each of the following strain rate magnitudes: 10-3,   

10-4, 10-5, and 10-6 s-1. This test is designed to reveal the effect of strain rate on the unloading 

behavior of PMR-15 at 288°C, In addition the effects of prior aging will be elucidated. An 

example of stress-strain curves obtained in a loading/unloading test performed for un-aged 

material at 288°C is shown in Figure 5.5. 

 

Figure 5.5:  Stress-Strain Curves Obtained for PMR-15 in Loading/Unloading Tests at 288 
°C.  Experimental Data from McClung[27]. 
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Recovery of Strain at Zero Stress 

 Immediately following the unloading portion of the loading/unloading test described 

above, the control mode was switched to load and the specimens were held at zero stress for a 

minimum of 6 h to assess the influence of prior strain rate magnitude on the recovery of strain.  

While zero load was maintained the change in strain was observed and recorded.  The test 

continued until the strain approached an asymptotic solution.   Recovery tests were performed 

for each aging group following loading/unloading at strain rate magnitudes of 10-3, 10-4, 10-5, and 

10-6 s-1.  An example of the results obtained in a recovery test is shown in Figure 5.6, where the 

recovered strain is presented as a percentage of the inelastic strain value measured immediately 

after reaching zero stress. 

 

Figure 5.6:  Recovery at Zero Stress Following Loading/Unloading of un-aged PMR-15 at 
288 °C. Recovered Strain as Percentage of Strain Immediately After Reaching Zero Stress.  

Reproduced from McClung and Ruggles-Wrenn [26]. 
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Creep Test 

 Specimens from each aging group were subjected to monotonic loading at strain rates of 

10-4 and 10-6 s-1 up to a stress of 21 MPa.  Once this stress level was reached the control mode 

was switched to load and a creep test of 6-h duration was performed. After the end of the creep 

period, straining resumes at the given strain rate and continues to specimen failure. These tests 

are designed to elucidate the influence of prior strain rate on creep behavior. Results of these 

tests are also used to validate the VBOP by comparing the model predictions with the 

experimental data.  A sample of the results obtained from a creep tests are shown in Figure 5.7. 

 

Figure 5.7:  Creep Strain vs. Time for Un-aged PMR-15 at 21 MPa and 288 °C. 
Reproduced from McClung [26]. 
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Strain Rate Jump Test 

 The strain rate jump test was employed in order to determine whether PMR-15 polymer 

exhibits the strain rate history effect (SRHE).  The strain rate jump test consisting of segments of 

monotonic loading at two different strain rates test is shown schematically in Figure 5.8.  Strain 

rates of 10-3 and 10-5 s-1 were employed. Specimens from each aging group were tested. Due to 

limited ductility of the PMR-15 polymer at 288°C, only a single strain rate jump was performed 

at the strain of 3.0%. The results of these tests can be compared to the stress-strain curves 

produced in monotonic tension tests performed at 10-3 and 10-5 s-1 to determine whether the 

material exhibits the SRHE.   

 

Figure 5.8:  Schematic of a Strain Rate Jump Test. Reproduced from McClung [27]  
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6. Experimental Observations 

Assessment of Specimen-to-Specimen Variability 

Because each PMR-15 specimen exhibits slightly different characteristics it is necessary 

to quantify those differences to avoid drawing false conclusions from specimens which display 

atypical mechanical behavior.  To accomplish this assessment of specimen-to-specimen 

variability room temperature modulus of each specimen was measured prior to. During these 

measurements the stresses were maintained below 3 MPa.  Previous testing has also shown that 

PMR-15 at room temperature exhibits nearly linear elastic behavior below this stress level [5, 

10,12, 27, 29].  To eliminate data scatter observed at very low stress levels and potential 

differences between the loading and unloading path a linear best fit was computed using data 

gathered only during loading and at stresses above 0.5 MPa.  Because these tests were run in 

stress control and scatter is principally in strain it is proper to use a linear best fit value for 

compliance and then invert this value to find the modulus.  This was accomplished via the 

MATLAB ‘polyfit’ command which performed a linear fit based on least squares of the error.  

The average room temperature modulus for this batch of material was 3.63 GPa with a standard 

deviation of 0.20 GPa.  No specimens produced an anomalous value of the room-temperature 

elastic modulus. Hence all specimens were used in elevated temperature testing.  The distribution 

of the room temperature elastic modulus is depicted in Figure 6.1. 
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Figure 6.1:  Room Temperature Elastic Modulus for the PMR-15 Polymer 

Weight Loss Measurements 

 When polymers are exposed to elevated temperature chain scission and additional cross 

linking occurs [6].  This chemical degradation results in the release of light weight volatiles.  The 

rectangular samples included with each aging group were weighed as described in Chapter 5.  

Changes in weight were small but measurable and a general trend of increasing weight loss with 

increasing aging temperature may be observed in Figure 6.2. For samples aged at 274 °C the  

rate of weight loss is pronounced initially, then slows down and stabilizes between 1000 and 

2000 hours of aging time with samples showing very little change in weight.  This stop in weight 

loss may be attributed to saturation in chain scission at this temperature as suggested by 

Broeckert [6]. It may be noted that weight loss observed for specimens aged at 260 °C appears to 

exceed weight loss observed for specimen aged at 274 °C for aging durations of 1000 and 2000 
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hours.  This is likely due to specimen-to-specimen variability as only a single rectangular sample 

was weighed for each 260 °C aging group.  

 

Figure 6.2:  Comparison of Percent Weight Loss for PMR-15 Neat Resin Aged in Argon at 
260 °C, 274 °C, 288 °C, and 316 °C.  Data at 260 °C from Diedrick [10].  Data at 288 °C 

from Broeckert [6]. Data at 316 °C from Ozmen[28]. 

Thermal Expansion 

 Previous research has suggested that the coefficient of thermal expansion is not strongly 

influenced by prior aging [6, 32].  While the objectives of this research did not include a rigorous 

validation of this assumption, the thermal strain accumulated as the temperature increased from 

room temperature (24 °C) to test temperature (288 °C) was recorded for each specimen.  The 



 

57 

 

coefficients of thermal expansion determined in this effort were in agreement with those reported 

previously [6, 12, 32].  Figure 6.3 shows an average thermal strain produced at 288 °C as a 

function of the duration of prior aging at 274° C in argon. The standard deviation of each sample 

group is represented by the vertical bars at each data point. While it appears that there is some 

change in average thermal strain with prior aging time it should be noted that specimen-to-

specimen variability plays a much larger role.  In fact, variation of average thermal strain fits 

well within the standard deviation of thermal strains measured for any aging group.  

 

Figure 6.3:  Thermal Strain at 288 °C vs. Duration of Aging in Argon at 274 °C for PMR-
15 Neat Resin. 
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Deformation Behavior at 288 °C of PMR-15 Subjected to Prior Aging in Argon at 274 °C 

 To understand the effects of aging at 274 °C on the mechanical behavior of PMR-15 at 

288 °C the exploratory tests outlined in Chapter 5 were carried out.  The results of these tests 

will be organized by test type. For every test type results produced by each aging group will be 

reviewed, then compared to the results obtained for other aging groups. Because no un-aged 

specimens were tested as a part of this effort, data from experiments performed by McClung [27] 

will be presented in aging comparison charts.  

Monotonic Tension to Failure 

 Specimens from each aging group were subjected to monotonic tension to failure tests at 

10-3, 10-4, 10-5, and 10-6 s-1.  For all aging durations the material exhibits no distinctly linear 

region as the slope of the stress strain curve diminishes gradually with increasing strain.  

However, in all cases the stress-strain curves exhibit nearly linear behavior in the small region 

immediately upon leaving the origin  In this region the slope of the stress-strain curve does not 

exhibit a large dependence on strain rate with the average difference between the fastest (10-3 s-1) 

and slowest (10-6 s-1) loading rates being less than 0.4 GPa.  

For the 50 h aging aging group the initial quasi-elastic modulus for all strain rates is 1.8 

GPa.  Due to unavailability of the 25 kN (5.5 kip) testing machine, monotonic tests at strain rates of 

10-3, 10-5, and 10-6 s-1 were performed on the 15 kN (3.3 kip) testing machine.  Poor alignment of 

this caused early failures of two specimens. Yet, even with this limited data it is seen that the strain 

rate has a prominent effect on the monotonic stress-strain behavior (see Figure 6.4). Increasing 

strain rate results in higher flow stress and a delayed departure from nearly linear stress-strain 
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behavior. This delayed departure from nearly linear behavior results in a more pronounced 

“knee” of the stress-strain curves obtained at faster strain rates.    

 

Figure 6.4: Stress-Strain Curves for PMR-15 Specimens Aged for 50 h at 274 °C in Argon 
Obtained in Monotonic Tension to Failure Tests Conducted at Constant Strain Rates of  

10-3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 

Specimens aged for 100 hours produced much larger strains in monotonic tension tests. 

Hence the results provide more insight into the strain rate dependence of the material behavior. 

Results produced at 10-4 and 10-6 sec-1 reveal that the flow stress increases with increasing strain 

rate (see Figure 6.5).  Each of these tests also demonstrates that the departure from nearly linear 

behavior is delayed as strain rate is increased.  Strain rate also has a strong effect on the shape of 
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the “knee” of the stress-strain curve; the “knee” becomes more pronounced with increasing strain 

rate. These results also demonstrate that strain rate has little effect on the tangent modulus. The 

stress-strain curves produced at 10-4 s-1 and at 10-6 s-1 exhibit similar slopes in the region of fully 

established plastic flow. 

 

Figure 6.5: Stress-Strain Curves for PMR-15 Specimens Aged for 100 h at 274 °C in Argon 
Obtained in Monotonic Tension to Failure Tests Conducted at Constant Strain Rates of 10-

3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 

 Some of the specimens aged for 250 hours exhibited the expected strain rate dependence 

as shown in Figure 6.6.  However, the specimen tested at 10-4 s-1 produced non typical results 

with stress-strain curve lying very close to the test performed at a strain rate of 10-5 s-1.  This 
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behavior is likely attributable to specimen-to-specimen variability.  Additionally the specimen 

tested at 10-4 s-1 exhibited an anomalous stress drop following the knee which is not consistent 

with other testing. 

 

Figure 6.6: Stress-Strain Curves for PMR-15 Specimens Aged for 250 h at 274 °C in Argon 
Obtained in Monotonic Tension to Failure Tests Conducted at Constant Strain Rates of 10-

3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 

 Figure 6.7 shows the stress-strain behavior for specimen subjected to 500 h of aging in 

argon at 274°C. The strain rate dependence is again evident.  Note that the specimen loaded at 

10-5 s-1 exhibits a higher tangent modulus than that exhibited by specimens subjected to prior 
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aging of shorter duration. Results in Figure 6.7 also demonstrate a more pronounced “knee” is 

produced at higher strain rates. 

 

Figure 6.7: Stress-Strain Curves for PMR-15 Specimens Aged for 500 h at 274 °C in Argon 
Obtained in Monotonic Tension to Failure Tests Conducted at Constant Strain Rates of 10-

3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 

 All specimens subjected to 100 h of prior aging entered the flow stress region during 

monotonic tension to failure tests (Figure 6.8). Results obtained at 10-3, 10-4, and 10-6 s-1 clearly 

demonstrate that departure from nearly linear behavior is strongly influenced by strain rate 

(Figure 6.8). Note that the stress-strain curve produced at a strain rate of 10-5 s-1 departs from 

nearly liner behavior sooner, and exhibits lower flow stress levels than expected. 
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Figure 6.8: Stress-Strain Curves for PMR-15 Specimens Aged for 1000 h at 274 °C in 
Argon Obtained in Monotonic Tension to Failure Tests Conducted at Constant Strain 

Rates of 10-3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 

Results of the monotonic tension to failure tests obtained for specimens aged for 2000 h 

are depicted in Figure 6.9.   The specimens tested at 10-3 s-1 and at 10-4 s-1 failed before reaching 

the flow stress region, however specimens loaded at slower strain rates produced deformations 

well beyond the nearly liner region.  All stress-strain curves exhibit nearly identical  slopes at or 

near maximum strain, confirming McClung’s assertion that tangent modulus is nearly 

independent of strain rate [27]. Note that the stress-strain curve obtained at a strain rate of 10-6 s-1 

exhibits a negative slope at about 4.25% strain. A careful review of the recorded test data 
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revealed  a marked increase in test temperature at this point in time.  This increase in temperature 

was observed in other tests conducted in both load and strain control.  Monitoring the ambient 

temperature in the laboratory revealed a ~5 °C increase in average ambient temperature between 

9:00 pm and 4:00 am, when the building air conditioning system is inactive.  It is conjectured 

that the change in the thermal profile of the specimen is caused by the change in the ambient 

temperature.   

 

Figure 6.9: Stress-Strain Curves for PMR-15 Specimens Aged for 2000 h at 274 °C in 
Argon Obtained in Monotonic Tension to Failure Tests Conducted at Constant Strain 

Rates of 10-3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 

To elucidate changes in deformation behavior due to aging, results of the monotonic 

tensile tests obtained at a given strain rate for specimens in different aging groups are presented 
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together in Figure 6.10 through Figure 6.13.  Figure 6.10 presents the stress-strain curves 

produced at a strain rate of 10-3 s-1. The effects of aging duration on both the flow stress and the 

knee of the stress-strain curve are readily seen.  Increasing aging duration produces a higher flow 

stress and causes a more pronounced knee. Additionally, the slope of the stress-strain curve 

immediately upon leaving the origin increases with increasing aging duration.    

 

Figure 6.10:  Stress-Strain Curves Obtained in Monotonic Tensile Tests at a Strain Rate of 
10-3 s-1 at 288 °C for PMR-15 Aged at 274 °C for 0 to 2000 h. Data for the Un-aged Material 

from McClung[27]. 
 

The results of tests performed at a strain rate of 10-4 s-1 are in displayed in Figure 6.11. 

The effects of prior aging are more pronounced at this lower strain rate.  The specimen subjected 
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to 50 hours of prior aging exhibited higher stress than was typical for this strain rate. Specimens 

subjected to prior aging for 0, 100, and 250 h show only minor changes in behavior. Specimens 

aged for 500, 1000, and 2000 h showed delayed departure from nearly linear behavior with 

increasing aging duration.  The specimens aged for 500 and 1000 h also produced stress-strain 

curves with the increasingly pronounced knee and higher flow stress levels. These results 

illustrate the effects of prior aging on tensile stress-strain behavior.    

 

Figure 6.11:  Stress-Strain Curves Obtained in Monotonic Tensile Tests at a Strain Rate of 
10-4 s-1 at 288 °C for PMR-15 Aged at 274 °C for 0 to 2000 h. Data for the Un-aged Material 

from McClung[27]. 
 

 Figure 6.12 shows the results produced at a strain rate of 10-5 s-1.  At this strain rate the 

specimens attain much larger strains, hence the changes in flow stress are easier to observe. 
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Specimens aged for 0, 50, and 100 h show very little difference in behavior.  Specimens 

subjected to longer aging durations show delayed departure from nearly linear behavior. The 

knee of the stress-strain curve also becomes more pronounced, with the 2000 h specimen 

exhibiting a “stress overshoot.”  Flow stress increases with aging duration. Although difficult to 

observe in Figure 6.12, computed tangent modulus also increases with aging duration.  

 

Figure 6.12:  Stress-Strain Curves Obtained in Monotonic Tensile Tests at a Strain Rate of 
10-5 s-1 at 288 °C for PMR-15 Aged at 274 °C for 0 to 2000 h.  

Data for the Un-aged Material from McClung[27]. 
 

At the slowest strain rate of 10-6 s-1 the effects of high temperature aging are most 

pronounced.  The response of the un-aged specimen appears significantly “softer” than that of 
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the specimen subjected to even short aging durations.  This may be due to material batch 

variability. However, at slow strain rates significant changes in material behavior of the 

specimens aged for short durations may also be observed in data reported by McClung [27].   

The weight loss data in Figure 6.2, results in Figure 6.13, and results of experiments conducted at 

slow strain rates reported by McClung [27] suggest that the changes in material behavior occur 

rapidly during the initial hours of aging then approach some slower constant rate for subsequent 

hours of aging.       

 

 Figure 6.13:  Stress-Strain Curves Obtained in Monotonic Tensile Tests at a Strain Rate of 
10-3 s-1 for PMR-15 Aged at 274 °C for 0 to 2000 h, Tested at 288 °C  

Un-aged Experimental Data from McClung[27]. 
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Constant Strain Rate Test with a Period of Relaxation 

 To characterize VBOP relaxation tests must be performed. In a relaxation test the strain is 

held constant while and the load is allowed to vary with time. To accurately characterize the 

VBOP model the relaxation test should be performed in the region of fully established plastic 

flow.  Results in Figure 6.6 show that the specimens in the 250-h aging group subjected to 

monotonic tension to failure tests at 10-3 s-1 achieve fully established plastic flow only at strains ≥ 

3.5%. Therefore, the relaxation test should be performed at a strain greater than 3.5%.  However, 

because a large percentage of the specimens failed at strains < 3.5% a strain of 3% was selected 

for relaxation tests.  Specimens were loaded at constant strain rate to the strain of 3%, where a 

12-h relaxation test was performed. The strain   rates of 10-3, 10-4, 10-5, and 10-6 s-1 were 

employed. It was found that 12 hours was sufficient for the stress to reach asymptotic values 

during relaxation.  Following relaxation each specimen was loaded to failure at the strain rate 

used in the initial loading of the specimen. 

A figure depicting the stress-strain behavior of material aged for 50 hours at 274°C is 

shown in Figure 6.14.  It is seen that the increasing strain rate results in delayed departure from 

nearly linear behavior, a more pronounced knee of the stress-strain curve, and increasing flow 

stress. Note that the monotonic stress-strain behavior produced at the strain rate of 10-4 s-1 during 

initial strain-controlled loading is very similar to that produced at 10-5 s-1.  This observation 

suggests that the scatter in the monotonic stress-strain response due to specimen-to-specimen 

variability is comparable to the difference in the stress-strain response caused by an order of 

magnitude change in strain rate.  The results in Figure 6.10 also reveal that a nearly equal stress 

level was reached by all specimens at the end of the relaxation test, regardless of the prior strain 
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rate. After the relaxation test, straining resumed at the strain rate used during initial loading. It is 

seen in Figure 6.10 that during this latter part of the test flow stress levels characteristic of a 

given strain rate were reached in all tests.

 

Figure 6.14: Stress-Strain Curves for PMR-15 Specimens Aged for 50 h at 274 °C in Argon 
Obtained in Constant Strain Rate Tests with a Period of Relaxation Conducted at Constant 

Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 

Stress-strain response obtained for specimens in the 100-h aging group is depicted in 

Figure 6.15. The results in this figure demonstrate delayed departure from nearly linear behavior, 

a more pronounced knee of the stress-strain curve, and increasing flow stress with increasing 

loading rate. As was the case for the specimens in the 50-h aging group, the monotonic stress-
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strain curves produced at strain rates of 10-4 and 10-5 s-1 are nearly the same.  At the end of the 

relaxation test, most specimens produced the same stress level. However, the specimen strained 

at 10-5 s-1 before the relaxation test, produced an uncharacteristically high stress level at the end 

of relaxation. Straining resumed after the relaxation test was complete produced flow stress 

levels characteristic of the strain rate employed. The specimen tested with the strain rate of 10-5 

s-1 represents an exception. In this case the stress levels were uncharacteristically high. 

 

Figure 6.15: Stress-Strain Curves for PMR-15 Specimens Aged for 100 h at 274 °C in 
Argon Obtained in Constant Strain Rate Tests with a Period of Relaxation Conducted at 

Constant Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 
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Figure 6.16 shows the results obtained for specimens which had previously been aged for 

250 h. Again, the stress-strain curves produced at strain rates of 10-4 and 10-5 s-1 before relaxation 

are nearly identical.  The specimens previously loaded at faster strain rates reached lower stress 

levels at the end of relaxation than those previously loaded at slower rates. As the straining at a 

given strain rate resumed after the relaxation test all specimens produced flow stress levels 

characteristic of the given strain rate. 

 

Figure 6.16: Stress-Strain Curves for PMR-15 Specimens Aged for 250 h at 274 °C in 
Argon Obtained in Constant Strain Rate Tests with a Period of Relaxation Conducted at 

Constant Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 
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Results of the monotonic tests with a period of relaxation obtained for specimen aged for 

500 hours, are depicted in Figure 6.17. In this case distinctly different stress-strain curves were 

produced during monotonic loading at 10-4 and 10-5 s-1. However, for this aging group, similar 

stress-strain curves were obtained at strain rates of 10-5 and 10-6 s-1.  This result again suggests 

that data scatter due to specimen-to-specimen variability may cloud the behavior changes caused 

by a tenfold increase or decrease in strain rate. 

 

Figure 6.17: Stress-Strain Curves for PMR-15 Specimens Aged for 500 h at 274 °C in 
Argon Obtained in Constant Strain Rate Tests with a Period of Relaxation Conducted at 

Constant Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1 at 288 °C. 
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 Specimens subjected to aging at 274 °C for 1000 hours or longer exhibited increased 

embrittlement.  Multiple tests were attempted at a strain rate of 10-3 s-1,. However, all specimens 

failed before reaching the strain of 3%.  Specimen strained at all three slower strain rates reached 

the strain of 3%, where a 12-h period of relaxation was introduced.  The results of these tests are 

shown in Figure 6.18. Strain rate dependence of the monotonic stress-strain response is evident. 

As the straining was resumed after relaxation the specimen tested at 10-6 s-1 reached a flow stress 

that was slightly higher than that characteristic of this strain rate. All other specimens failed prior 

to reaching the flow stress region.   

 

Figure 6.18: Stress-Strain Curves for PMR-15 Specimens Aged for 1000 h at 274 °C in 
Argon Obtained in Constant Strain Rate Tests with a Period of Relaxation Conducted at 

Constant Strain Rates of 10-4, 10-5, and 10-6 s-1 at 288 °C. 
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 A marked increase in brittleness is observed for specimens aged for 2000 hours. Most 

specimens failed before reaching the strain of 3%.  Remarkably the specimen tested at the fastest 

strain rate of 10-3 s-1 attained the strain of 3% as did the specimen tested at 10-6 s-1. Hence only 

these two specimens were subjected to relaxation at the strain of 3%.  Results are presented in 

Figure 6.19. 

 

Figure 6.19: Stress-Strain Curves for PMR-15 Specimens Aged for 2000 h at 274 °C in 
Argon Obtained in Constant Strain Rate Tests with a Period of Relaxation Conducted at 

Constant Strain Rates of 10-3and 10-6 s-1 at 288 °C. 

When specimens are held at a constant strain during the relaxation test the stress 

decreases.  Stress drop during relaxation is plotted vs relaxation time in Figure 6.20 through 
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Figure 6.25.  The majority of stress drop occurs during the first few hours of relaxation.  The rate 

of stress decrease immediately at the beginning of relaxation is a strongly influenced by prior 

strain rate.  Specimens strained at faster strain rates produce a more rapid initial stress drop and 

approach asymptotic stress values more quickly.  In most tests the stress has reached an 

asymptotic value after about 10 h of relaxation. Hence it is reasonable to assume that little 

additional stress drop would occur if relaxation test were extended beyond 12 hours. Several 

marked “jumps” can be seen in the stress drop vs. relaxation time curves. For example, see the 

stress drop vs. relaxation time curve obtained for the specimen in the 50-h aging group strained 

with a prior strain rate of 10-5 s-1. Note a “jump” in that curve occurring at 5.5 h of relaxation.  It 

is believed that these changes in stress levels occur due to changes in the ambient laboratory 

temperature caused by the inactivity of the air conditioning system as previously discussed.  

These jumps in stress level may also be observed in the relaxation curves obtained for (1) the 

specimens in the 100-h age group strained at prior strain rates of 10-3, 10-5, and 10-6 s-1, (2) the 

specimens in the 250-h age group strained at prior strain rates of 10-3, 10-5, and 10-6 s-1, (3) and 

the specimens in the 500-h age group strained at prior strain rates of 10-3 and 10-6 s-1. 
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Figure 6.20: Stress Decrease vs. Relaxation Time obtained at 288 °C for PMR-15 Aged in 
Argon for 50 h at 274 °C. 

 

Figure 6.21: Stress Decrease vs. Relaxation Time obtained at 288 °C for PMR-15 Aged in 
Argon for 100 h at 274 °C. 
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Figure 6.22: Stress Decrease vs. Relaxation Time obtained at 288 °C for PMR-15 Aged in 
Argon for 250 h at 274 °C.1 

 

Figure 6.23: Stress Decrease vs. Relaxation Time obtained at 288 °C for PMR-15 Aged in 
Argon for 500 h at 274 °C. 
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Figure 6.24: Stress Decrease vs. Relaxation Time obtained at 288 °C for PMR-15 Aged in 
Argon for 1000 h at 274 °C. 

 

Figure 6.25: Stress Decrease vs. Relaxation Time obtained at 288 °C for PMR-15 Aged in 
Argon for 2000 h at 274 °C. 
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A key observation made by other researchers suggests that the relaxation behavior is little 

affected by prior isothermal aging [10, 27, 28]. The results of relaxation tests performed at 288 

°C on specimens subjected to prior aging at 274 °C are shown in Figure 6.26 through Figure 

6.29. Results in Figures 6.26-6.29 demonstrate that prior aging at 274°C has little effect on the 

relaxation response.  The amount of stress drop during relaxation neither increases nor decreases 

with increasing prior aging duration, all differences in behavior are due to experimental scatter. 

 

 

Figure 6.26:  Stress Drop During Relaxation at 288 °C for PMR-15 Specimens Aged at 274 
°C. Data for the Un-aged Material from McClung[27]. 
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 Figure 6.27:  Stress Drop During Relaxation at 288 °C for PMR-15 Specimens Aged at 274 
°C. Data for the Un-aged Material from McClung[27]. 

 
Figure 6.28:  Stress Drop During Relaxation at 288 °C for PMR-15 Specimens Aged at 274 

°C. Data for the Un-aged Material from McClung[27]. 
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 Figure 6.29:  Stress Drop During Relaxation at 288 °C for PMR-15 Specimens Aged at 274 
°C. Data for the Un-aged Material from McClung[27]. 

Loading / Unloading Test at Constant Strain Rate 

 The PMR-15 specimens from each aging group were loaded at constant strain rates of  

10-3, 10-4, 10-5, and 10-6 s-1 to a strain of 3% then unloaded to zero stress at the same strain rate 

magnitude.  The results of these tests are presented together with the results of the monotonic 

tension to failure tests in Figure 6.30 through Figure 6.35. The effects of strain rate on the stress-

strain behavior are readily apparent on both the loading and the unloading paths. 

 The results of loading/unloading tests for specimens aged for 50 hours at 274 °C are 

shown in Figure 6.30.  Because specimen tested in tension to failure at 10-3 and 10-5 s-1 failed at 

very small strains Figure 6.30 includes the stress-strain curves produced during loading at 10-3 

and 10-5 s-1 in the monotonic tests with a relaxation period. As previously reported [10, 27, 28] 

the specimens exhibited curved unloading, which is more pronounced at slower loading rates.  
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The strain measured immediately upon reaching zero stress at the end of unloading increases 

with decreasing strain rate, except in the case of the specimen tested at 10-5 s-1 which produced 

the same strain (1.2% strain) as did the specimen tested at 10-6 s-1.  

 

Figure 6.30: Stress-Strain Curves Obtained at 288 °C for PMR-15 Specimens Aged for 50 h 
at 274 °C in Argon in Monotonic Tensile Tests and in Loading/Unloading Tests at Strain 

Rates of 10-3, 10-4, 10-5, and 10-6 s-1. 

 Figure 6.31 shows the stress-strain behavior of the specimens which were subjected to 

100 h of aging at 274 °C.  All specimens in this aging group exhibited loading behavior 

consistent with the results of prior testing.  The curvature of the unloading path is most 

pronounced in the case of the specimens loaded at slower strain rates.  The strain measured 

immediately upon reaching zero stress at the end of unloading increases with decreasing strain 

rate.  



 

84 

 

 

  Figure 6.31: Stress-Strain Curves Obtained at 288 °C for PMR-15 Specimens Aged for 
100 h at 274 °C in Argon in Monotonic Tensile Tests and in Loading/Unloading Tests at 

Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1. 

 For specimens aged for 250 hours, close agreement between the results of the monotonic 

tensile to failure and the results produced during loading portion of the loading/unloading tests 

was observed for three of the four strain rates used (see Figure 6.32). The stress-strain curve 

obtained for the specimen tested at a strain rate of 10-4 s-1 departs from nearly linear behavior 

sooner and produces lower stresses than the stress-strain curve obtained  at that strain rate in 

monotonic tension.  Furthermore, the unloading stress-strain curve produced at the strain rate 

magnitude of 10-4 s-1 exhibited more curvature than that produced at the strain rate magnitude of 
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10-5 s-1.  Results in Figure 6.32 also demonstrate that the strain measured immediately upon 

reaching zero stress increases with decreasing strain rate magnitude. 

 

  Figure 6.32: Stress-Strain Curves Obtained at 288 °C for PMR-15 Specimens Aged for 
250 h at 274 °C in Argon in Monotonic Tensile Tests and in Loading/Unloading Tests at 

Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1. 

 

The results obtained for specimens aged for 500 h are shown in Figure 6.33.  Strain rate 

dependence is prominent in the three fastest tests.  However, the loading/unloading test 

performed at 10-6 s-1 produced stresses that were about 15% higher than the stresses produced in 

the monotonic tensile test conducted at the same strain rate.  In fact, stresses produced in 

loading/unloading at 10-6 s-1 were s similar to those produced in loading/unloading at a strain rate 
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of 10-5 s-1.  Note that the strain measured immediately upon reaching zero stress at the end of 

unloading decreases with increasing strain rate for all specimens except the specimen tested at 

the slowest strain rate.  

 

  Figure 6.33: Stress-Strain Curves Obtained at 288 °C for PMR-15 Specimens Aged for 
500 h at 274 °C in Argon in Monotonic Tensile Tests and in Loading/Unloading Tests at 

Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1. 

 

 Loading/unloading tests performed on specimens in the  the 1000-h aging group 

produced results consistent with those previously reported.  Stress-strain behavior is affected by 

strain rate with decreasing strain rate producing lower stresses during loading and a more curved 



 

87 

 

unloading stress-strain path. Results in Figure 6.34 also show that the monotonic tension to 

failure test performed at 10-5 s-1 produced stress levels lower than those produced in the 

corresponding loading/unloading test.   

 

  Figure 6.34: Stress-Strain Curves Obtained at 288 °C for PMR-15 Specimens Aged for 
1000 h at 274 °C in Argon in Monotonic Tensile Tests and in Loading/Unloading Tests at 

Strain Rates of 10-3, 10-4, 10-5, and 10-6 s-1. 

 Specimens subjected to 2000 h of aging at 274 °C exhibited increased embrittlement.  

Therefore the specimen tested at a strain rate of 10-3 s-1 failed before reaching the strain of 3%.  

The results of the other loading/unloading tests obtained for the 2000-h aging group are 

presented in Figure 6.35.  It is seen in Figure 6.35 that higher stress levels were produced in the 
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loading/unloading test performed at a strain rate magnitude of 10-6 s-1 than in the monotonic 

tension test conducted at the same strain rate. Note that the results produced in loading/unloading 

test conducted at10-5 s-1 are close to those produced in loading/unloading at 10-6 s-1.   

 

  Figure 6.35: Stress-Strain Curves Obtained at 288 °C for PMR-15 Specimens Aged for 
2000 h at 274 °C in Argon in Monotonic Tensile Tests and in Loading/Unloading Tests at 

Strain Rates of 10-4, 10-5, and 10-6 s-1. 

Recovery of Strain at Zero Stress 

 Immediately after completion of loading/unloading test, the control mode was switched 

to load and the specimens were held at zero stress in order to evaluate the recovery of strain . The 

results of these tests are displayed in Figure 6.36 through Figure 6.41 where recovered strain is 

shown as a percentage of the inelastic strain value measured immediately after reaching zero 
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stress.  There were multiple instances within these tests where the recorded strain experienced an 

abrupt “jump”.  Typically the strain would later return to values consistent with the initial portion 

of the strain recovery curve.  These “jumps” in strain data are concurrent with changes in the 

ambient laboratory observed consistently from 9:00 pm to 4:00 am and at other occasions when 

the lab door was left open.  These effects were observed while operating in both strain and load 

control.  The portions of the data where these “jumps” in strain data occurred have been replaced 

with dashed lines in the figures to display results believed to be more representative of true 

material behavior.  

The prior strain rate has a dramatic effect on the percentage of strain recovered at zero 

stress.  For specimens tested with slower prior strain rates the strain measured after unloading is 

larger and the percentage of this strain recovered is smaller than those for specimens loaded and 

unloaded at faster strain rates. For the three fastest strain rates the majority of strain was 

recovered in less than 10 h regardless of prior aging duration.  Whereas, specimens loaded at a 

strain rate of 10-6 s-1 continued to recover measurable strain for roughly 30 h after unloading to 

zero stress. Specimens loaded at the two slower strain rates did not recover 100% of the strain, 

yet the strains measured during recovery approached asymptotic values. While some specimens 

loaded at slower prior strain rates were allowed to recover for durations in excess of 100 h the 

majority of the strain was recovered in the first 30 h. Based on these observations permanent 

strain can be reasonably assumed.  
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Figure 6.36:  Recovery at Zero Stress at 288 °C Following Loading and Unloading for 

PMR-15 Aged for 50 h at 274 °C. Recovered Strain is shown as a Percentage of the 
Inelastic Strain Value Measured Immediately After Reaching Zero Stress. 
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Figure 6.37:  Recovery at Zero Stress at 288 °C Following Loading and Unloading for 
PMR-15 Aged for 100 h at 274 °C. Recovered Strain is shown as a Percentage of the 

Inelastic Strain Value Measured Immediately After Reaching Zero Stress. 
 

 
Figure 6.38:  Recovery at Zero Stress at 288 °C Following Loading and Unloading for 
PMR-15 Aged for 250 h at 274 °C. Recovered Strain is shown as a Percentage of the 

Inelastic Strain Value Measured Immediately After Reaching Zero Stress. 
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Figure 6.39:  Recovery at Zero Stress at 288 °C Following Loading and Unloading for 
PMR-15 Aged for 500 h at 274 °C. Recovered Strain is shown as a Percentage of the 

Inelastic Strain Value Measured Immediately After Reaching Zero Stress. 
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Figure 6.40:  Recovery at Zero Stress at 288 °C Following Loading and Unloading for 
PMR-15 Aged for 1000 h at 274 °C. Recovered Strain is shown as a Percentage of the 

Inelastic Strain Value Measured Immediately After Reaching Zero Stress. 
 

 
Figure 6.41:  Recovery at Zero Stress at 288 °C Following Loading and Unloading for 
PMR-15 Aged for 2000 h at 274 °C. Recovered Strain is shown as a Percentage of the 

Inelastic Strain Value Measured Immediately After Reaching Zero Stress. 
Creep Test 

 Specimens from each aging group were loaded at constant strain rates of 10-4 and 10-6 s-1 

to a load of 21 MPa.  Then the control mode was then switched to load and a 6-h creep test was 

performed.  The results of these tests are presented in Figure 6.42 through Figure 6.47 as the 

creep strain vs. creep time curves.  Influence of prior strain rate on creep behavior is readily seen.  

For all aging groups the specimens loaded to creep stress at a faster strain rate accumulated more 

creep strain. Both primary and secondary creep was observed in all tests. 
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Figure 6.42:  Creep Strain vs. Time Curves Obtained at 288 °C and 21 MPa for PMR-15 
Aged for 50 h at 274 °C. Prior Strain Rates of 10-4 and 10-6 s-1. 

 

 

Figure 6.43:  Creep Strain vs. Time Curves Obtained at 288 °C and 21 MPa for PMR-15 
Aged for 100 h at 274 °C. Prior Strain Rates of 10-4 and 10-6 s-1. 
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Figure 6.44:  Creep Strain vs. Time Curves Obtained at 288 °C and 21 MPa for PMR-15 
Aged for 250 h at 274 °C. Prior Strain Rates of 10-4 and 10-6 s-1. 

 

 

Figure 6.45:  Creep Strain vs. Time Curves Obtained at 288 °C and 21 MPa for PMR-15 
Aged for 500 h at 274 °C. Prior Strain Rates of 10-4 and 10-6 s-1. 
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Figure 6.46:  Creep Strain vs. Time Curves Obtained at 288 °C and 21 MPa for PMR-15 
Aged for 1000 h at 274 °C. Prior Strain Rates of 10-4 and 10-6 s-1. 

 

 

Figure 6.47:  Creep Strain vs. Time Curves Obtained at 288 °C and 21 MPa for PMR-15 
Aged for 2000 h at 274 °C. Prior Strain Rates of 10-4 and 10-6 s-1. 
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Effects of prior aging at 274 °C on creep response may be assessed by comparing creep 

strains accumulated by specimens from different aging groups. The results of the creep tests are 

shown in Figure 6.48 and in Figure 6.49 for the prior strain rates of 10-4 s-1 and 10-6 s-1, 

respectively.  A general trend of decreasing creep strain accumulation with increasing aging 

duration may be observed.  The most dramatic changes in creep strain accumulation are seen for 

specimens subjected to prior aging of shorter duration.  For both prior strain rates the un-aged 

material accumulated the most creep strain and specimens aged for 2000 h accumulated the least 

creep strain. 

 

Figure 6.48: Creep Strain vs. Time Curves Obtained at 288 °C and 21 MPa for PMR-15 
Aged at 274 °C. Prior strain rate is 10-4 s-1. Data for the Un-aged Material from 

McClung[27]. 
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Figure 6.49:  Creep Strain vs. Time curves obtained at 288 °C and 21 MPa for PMR-15 
Aged at 274 °C. Prior strain rate is 10-6 s-1. Data for the unaged material from 

McClung[27].Strain Rate Jump Test 
  

The strain rate jump test is performed in order to assess whether the material exhibits the strain 

rate history effect (SRHE).  The specimens were loaded to a strain of 3% at 10-5 s-1 where the 

strain rate was changed to 10-3 s-1. A second set of tests were performed where specimens were 

loaded to a strain of 3% at 10-3 s-1 where the strain rate was changed to 10-5 s-1.   

 Results of the strain rate jump tests obtained for specimens aged for 50 h are shown in 

Figure 6.50. It is seen that the stress-strain curve produced at 10-5 s-1 by the specimen initially 

loaded at a strain rate of 10-3 s-1 is consistent with the stress-strain curve produced by the 

specimen initially loaded at 10-5 s-1. The specimen tested first at 10-5 s-1 then at 10-3 s-1 failed 

before the transient effects following the change in strain rate could diminish. However, it 

appears that the stress-strain curve produced after the strain rate was increased from 10-5 s-1 to 
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10-3 s-1 would have approached the curve expected in monotonic loading at an equal rate. This 

result suggests that the material does not exhibit SRHE. A unique stress-strain curve is obtained 

for a given strain rate. When the strain rate changes the stress “returns” to the stress-strain curve 

characteristic for that strain rate.  

 

Figure 6.50:  Stress-Strain Curves Obtained in Strain Rate Jump Tests for PMR-15 Aged 
50 h at 274 °C Tested at 288 °C. 

  

Only one of the two specimens aged for 100 h reached the strain of 3% where the strain 

rate was changed.  As seen in Figure 6.51 the specimen subjected to the strain rate jump test 

produced higher flow stress at a strain rate of 10-5 s-1 than the specimen subjected to monotonic 

tension at that strain rate.  Due to early failure of the specimen strained at 10-3 s-1 it is difficult to 
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draw any conclusions regarding the SRHE.  However, the stress produced at 10-3 s-1 in the strain 

rate jump test appears to be consistent with the flow stress expected at this strain rate.   

 

Figure 6.51:  Stress-Strain Curves Obtained in Strain Rate Jump Test and Monotonic 
Tensile Tests for PMR-15 Aged 100 h at 274 °C Tested at 288 °C. 

 

 Results of the strain rate jump tests obtained for the specimens in the 250-h aging group 

provide some of the most valuable data in evaluating whether the material exhibits the strain rate 

history effect.  As shown in Figure 6.52, the stress levels produced after the change in strain rate 

by both specimens quickly approach the flow stress levels characteristic for that particular strain 
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rate.  These results support the assertion that PMR-15 does not exhibit SRHE at 288 °C. 

 

Figure 6.52:  Stress-Strain Curves Obtained at 288 °C in Strain Rate Jump Test and in 
Monotonic Tensile Tests for PMR-15 Aged 250 h at 274 °C. 

 

Results of the strain rate jump tests obtained for specimens aged for 500, 1000, and 2000 

h are shown in Figure 6.53 through Figure 6.55.  For all of these ageing groups, the specimens 

initially loaded at a strain rate of 10-3 s-1 failed before reaching the strain of 3%. Specimens 

initially loaded at the slower strain rate of 10-5 s-1 achieved the strain of 3% but produced stress 

levels that were higher than those produced in monotonic tension tests conducted at that strain 

rate.  These specimens exhibited a rapid increase in stress following the strain rate jump.  
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However, specimen failures occurred shortly after the strain rate jump. Therefore only limited 

insight into the SRHE could be gained from these tests.  McClung also noted difficulty in 

performing strain rate jump tests for specimens which had been exposed to long aging durations 

due to failures occurring at small strains [27].    

 

Figure 6.53:  Stress-Strain Curves Obtained at 288 °C in Strain Rate Jump Test and in 
Monotonic Tensile Tests for PMR-15 Aged 500 h at 274 °C. 
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Figure 6.54:  Stress-Strain Curves Obtained at 288 °C in Strain Rate Jump Test and in 
Monotonic Tensile Tests for PMR-15 Aged 1000 h at 274 °C. 

 

 

Figure 6.55:  Stress-Strain Curves Obtained at 288 °C in Strain Rate Jump Test and in 
Monotonic Tensile Tests for PMR-15 Aged 2000 h at 274 °C. 
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Summary of Key Effects of Prior Aging in Argon at 274 °C on Deformation Behavior at 

288 °C 

 This section summarizes the effects of prior aging at 274 °C on the mechanical 

deformation behavior of PMR-15 at 288 °C.  Key effects of prior aging are listed below: 

 Increase in quasi elastic modulus with increase in prior aging time 

 Increasingly pronounced knee of the tensile stress-strain curve with increased prior aging 

time  

 Increase in flow stress with increasing prior aging time 

 Increase in tangent modulus with increasing prior aging time 

 Decreasing creep strain accumulation with increase in prior aging time 

 Increased brittleness with increase in prior aging time 

 Prior aging has no discernible effect on stress drop during relaxation  

 PMR-15 does not exhibit the strain rate history effect irrespective of prior aging history 

Comparison of the Effects of Prior Aging in Argon at 274 °C with the Effects of Prior 

Aging at 288 °C 

Previous research assessed the effects of prior aging at 288°C in argon on deformation 

behavior of PMR-15 at 288 °C [25, 26, 27]. The focus of prior work [25, 26, 27] was not on the 

effect of prior aging temperature on deformation behavior, but rather on the effect of prior aging 

time. Hence the aging and test temperature were the same (i. e. 288 °C). The current research 

aims to assess the effects of prior aging temperature on the deformation behavior. Therefore the 

effects of prior aging at 274°C on the deformation behavior at 288 °C were identified. Next the 



 

105 

 

effects of prior aging at 274°C on the deformation behavior at 288 °C will be compared to the 

effects of aging at 288 °C on the deformation behavior at 288 °C. By evaluating the deformation 

behavior at a single temperature (i. e. 288 °C) of the material with two different aging histories 

(the first involves aging at 274 ° while the second involves aging at 288°C) we aim to isolate and 

identify the effects of prior aging temperature.   Specimens aged at these two different 

temperatures produced the following qualitatively similar features of deformation behavior:    

 Increase in quasi elastic modulus with increase in prior aging time 

 Increasingly pronounced knee of the tensile stress-strain curve with increased prior aging 

time  

 Increase in flow stress with prior aging time 

 Increase in tangent modulus with increasing aging time 

 Decreasing creep strain accumulation with increase in prior aging time 

 Increased brittleness with increase in prior aging time 

Many of the observed behaviors are not only qualitatively similar but quantitatively comparable.  

The quantitative features of the material behavior will be further discussed in chapter 7.  A 

notable difference in the effects of aging at these two temperatures is seen in the weight loss 

measurements presented in Figure 6.2. 

In prior research efforts PMR-15 specimens were aged at 260 °C and at 316 °C [10, 27, 28].  

In these efforts testing was performed at temperatures which were equal to the aging 

temperature.  Despite these differences in aging/testing temperature the following common 

effects of prior aging may still be noted: 

 Quasi-elastic modulus increased with prior aging time   
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 Increasingly pronounced knee of the tensile stress-strain curve with increasing prior 

aging time  

 The flow stress increases with prior aging time at 274 °C and at 288 °C.  (Specimens 

aged at 316 °C experienced failures before reaching the flow stress region)   

 Increase in aging time (at all aging temperatures) results in an increasingly brittle 

response of the material 
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7. Constitutive Modeling 

 This chapter describes characterization of the VBOP model for PMR-15 subjected to 

prior aging at 274° C in argon.  The VBOP has been successfully used to predict the mechanical 

behavior of PMR-15 aged and tested at 260 °C, 288 °C, and 316°C [10, 27, 28].  The effects of 

prior isothermal aging on deformation behavior have been modeled by making the VBOP model 

parameters dependent on prior aging time as suggested by McClung [27]. Based on test data 

from the current research the VBOP model parameters will be expanded into functions of prior 

aging time at 274 °C using the power law form recommended by McClung and employed to 

predict the behavior of PMR-15 specimen subjected to 2000 hours of aging at 274 °C. 

Phenomenological Aspects of Deformation Behavior and Implications for Modeling 

The results of experiments performed at 288 °C on PMR-15 subjected to prior aging at 

274 °C has revealed the following characteristics:  

1.  Nearly linear elastic behavior upon initial loading 

2. Nonlinearly increasing flow stress with increasing strain rate 

3. Existance of a unique stress-strain curve for each strain rate 

4. The rate of recovery of strain at zero stress increases with prior strain rate. 

5. Increasing prior strain rate results in increasing creep strain. 

6. Faster prior strain rates result in increased stress drop during relaxation. 

The same trends were observed and modeled with the VBOP for both aged and un-aged 

PMR-15 polymer by Deidrick [10] at 260 °C, by McClung [27] at 288 °C, and by Ozmen [28] at 

316 °C. In all prior research efforts the temperature of prior aging was the same as the 
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temperature, at which the deformation behavior was evaluated. The focus was on elucidating and 

modeling the effect of prior aging time on deformation behavior. This effort will also use the 

VBOP model to model the deformation behavior of PMR-15. However, the current research 

addresses the deformation behavior at 288 °C of the material subjected to prior aging at 274 °C. 

Now the focus is on elucidating and modeling the effect of prior aging temperature on 

deformation behavior.  

Implications for Modeling the Effects of Prior Aging in Argon at 274 °C on Deformation 

Behavior at 288 °C 

 The key effects of prior isothremal aging on the deformation behavior of PMR-15 may be 

related to changes in specific VBOP model parameters: 

1. As aging time increased the slope of the stress-strain curve immediately upon leaving the 

origin also increased.  This can be accounted for in the VBOP model by changing the 

elastic modulus. 

2. The increasingly pronounced knee of the stress-strain curve seen with longer aging times 

can be modeled by modifying parameter C2 of the shape function as recommended by  

McClung [X]. 

3. The slope of the stress-strain curve in the region of the fully established inelastic flow 

increases with increasing prior aging duration. The VBOP model accounts for this 

variation by modifying the tangent modulus. 

4. Increases in the flow stress level due to prior aging are readily observed.  Flow stress 

levels are affected by tangent modulus, however changes in tangent modulus alone are 
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not sufficient to account for the observed changed in flow stress.  The remaining 

difference may be accounted for within the VBOP framework by modifying the isotropic 

stress.   

5. Due to the relative insensitivity of relaxation behavior to changes in prior aging history 

we may conclude that the VBOP viscosity function remains unchanged with prior aging 

duration. 

Review of VBOP Model Formulation 

 A full explanation of the VBOP model formulation used to represent the behavior of 

PMR-15 at 288 °C subject to prior aging at 274 °C is provided in Chapter 3.  For convenience 

this is reproduced here [27]. 

The uniaxial flow law is a combination of the elastic and inelastic strain rates  
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 The growth law of the equilibrium stress is 
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 The kinematic stress has the form 
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 The overstress invariant is defined as 

߁   ൌ ߪ|  െ ݃| (7.4) 

 The isotropic stress evolution for polymers remains the same as that in the standard VBO 
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 Equation 7.5 is simplified for PMR-15 at 288 °C by setting Ac = 0 thus A is constant.   

 The shape function has the form 

ߖ   ൌ ଵܥ ൅ ሺܥଶ െ  ଵሻ݁ି஼యหఢ೔೙ห (7.6)ܥ

 Since A is constant, the viscosity function for polymers reduces to 

  ݇ ൌ ݇ଵ ቂ1 ൅ ௰

௞మ
ቃ

ି௞య
    (7.7) 

 Where k1, k2, and k3 are material constants. 

 This formulation of VBOP was used in previous research accomplished for PMR-15 at 

260 °C [10], 288 °C [27], and 316 °C [28].  Based upon experimental observations made at 288 

°C for PMR-15 subjected to prior aging at 274 °C this formulation of VBOP is appropriate. 

Model Characterization Procedures 

Before a model may be employed to predict mechanical behavior it must be characterized 

for a given material. A systematic VBOP model characterization procedure was developed by 

McClung [27].  This research will follow the model characterization approach outlined in [27]: 

1. Determine elastic modulus and tangent modulus from monotonic tensile data 

2. Determine the equilibrium stress from relaxation data 

3. Determine the isotropic stress from the equilibrium stress and the tangent modulus 

4. Assess the viscosity function using results of the relaxation tests  

5. Determine the shape function parameters from monotonic tensile test data 

Elastic Modulus and Tangent Modulus 

Because the initial loading portion of both the monotonic tension to failure and relaxation 

tests are identical both tests may be used to determine the initial quasi-elastic modulus. For 
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PMR-15 aged at 274 °C and tested at 288 °C a small portion of the stress-strain curve 

immediately after leaving the origin exhibits a nearly constant the slope. For strains below ~0.1% 

the slope of the stress-strain curve shows only modest dependence on strain rate.  Thus, 

experimental data from both monotonic tension to failure tests and relaxation tests for all strain 

rates at strains below 0.1% were used to determine the elastic modulus used in the VBOP model. 

To calculate the tangent modulus only tests which exhibit fully established inelastic flow 

should be used.  Determining tangent modulus was difficult because many of the specimens 

failed before plastic flow was fully established.  When experimental data provided the 

opportunity to calculate multiple measures of tangent modulus for an aging group the average of 

these measurements was used. 

Equilibrium Stress and Isotropic Stress 

The isotropic stress can be determined in the region of fully established plastic flow by 

taking the difference between the kinematic stress, f, and the equilibrium stress, g. The 

relationships between the kinematic stress, f, isotropic stress, A, equilibrium stress, g, and 

overstress, (σ-g), are shown in Figure 7.1. Kinematic stress is defined as ݂ ൌ  ௧߳ and may beܧ

determined using the tangent modulus already calculated. After determining kinematic stress the 

isotropic stress can be determined from the equation ܣ ൌ ሼ݃ െ   .௧߳ሽܧ
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Figure 7.1:  Schematic of a stress-strain path generated by the VBOP. The equilibrium 
stress, g, and kinematic stress, f, curves are also shown. 

 

In the VBOP model stress present at the end of a sufficiently long period of relaxation is 

expected to approach the equilibrium stress-strain curve.  It should be noted that the VBOP 

model predicts diminishing equilibrium stress during relaxation, thus the equilibrium stress 

present at the end of relaxation at a given strain is not equal to the equilibrium stress present 

during loading at that same strain. The fact that equilibrium stress evolves during relaxation 

complicates the computation of isotropic stress. McClung [27] and Diedrick [10] found that 

assuming that equilibrium stress did not change during relaxation resulted in unacceptably low 

values of isotropic stress.  McClung [27] proposed iteratively estimating a value for isotropic 

stress and comparing the results to monotonic tension to failure experiments until acceptable 

results are obtained.  This process was successfully followed by Diedrick [10] and is used in this 

research.  McClung [27] states that once a value of isotropic stress has been found that produces 

good results for a particular material we may calculate the isotropic stress for the same material 

subjected to other prior aging durations from relaxation data. 
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In addition, the numerical VBOP simulations of the monotonic tension tests to failure 

together with the optimization techniques were employed to determine the isotropic stress. The 

isotropic stress computed using this method was higher than that produced by measuring stress at 

the end of relaxation. However, when this value of isotropic stress was used to model monotonic 

tension to failure it was found that it was still too low to produce good agreement with 

experimental data.  For example, in the case of specimens in the 50-h aging group, stress at the 

end of the relaxation test was 10.8 MPa, isotropic stress generated by using numerical 

simulations and optimization was 17 MPa, and isotropic stress that produced satisfactory 

simulations of the monotonic tension to failure data was 22 MPa. It is believed that if relaxation 

tests were performed in the region of fully established plastic flow the agreement between the 

isotropic stress found through numerical simulation and optimization and the isotropic stress 

determined from experimental results would be improved.    

Alternately, stress levels in the region of fully established flow could be used to solve for 

isotropic stress if viscosity function parameters were simultaneously established.  An improved 

method of finding isotropic stress may entail optimizing viscosity function parameters and 

isotropic stress simultaneously using experimental relaxation data obtained in the flow stress 

region. This method was not applied in this research due to lack of experimental data in the flow 

stress region.     

Viscosity Function 

Rate dependence of the VBOP is controlled by the viscosity function given in Equation 

7.7. McClung [27] concluded that the viscosity function parameters do not change with prior 

isothermal aging.  McClung [27] investigated the deformation behavior of PMR-15 at 288°C as 
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did this effort. Hence the viscosity function parameters obtained in this research should be nearly 

equal to those obtained by McClung [26].  Experimental results of relaxation tests obtained for 

the 50-h aging group for prior strain rates of 10-3, 10-4, 10-5, and 10-6 s-1 and a least squares 

optimization routine in MATLAB were used to determine the values of the viscosity function 

parameters k1, k2, and k3. McClung [26] reported that using values of stress drop produced 

during the entire relaxation period resulted in viscosity function parameters that did not match 

monotonic tension to failure data.  For this reason only experimental data obtained in the last two 

hours of relaxation were used to determine the viscosity function parameters. 

Note that the viscosity function parameters established in this research differ from those 

determined by McClung [27].  These differences, although measureable cause only minor 

changes in relaxation behavior.  Recall that McClung [26] determined the viscosity function 

parameters from relaxation tests performed at the strain of 4.5%, where the inelastic flow was 

fully established. In the case of present research, the relaxation tests were performed at the strain 

of 3.0%, where at some strain rates the inelastic flow was not fully established. Due to limited 

ductility and early failures of the material in the current study, the relaxation tests could not be 

performed at larger strain values and in some cases the relaxation data had to be collected before 

the inelastic flow was fully established. Using relaxation data collected outside the flow stress 

region as well as the variability in the material is likely behind the difference between the values 

of the viscosity function parameters produced in this research and those reported by McClung 

[26]. 
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Shape Function 

The shape function is responsible for the shape of the stress-strain curve during the 

transition from quasi-elastic to inelastic behavior and is given in Equation 7.6.  A MATLAB 

optimization program and experimental data from monotonic tension to failure tests at strain 

rates of 10-3, 10-4, 10-5, and 10-6 s-1were used to determine the values of the shape function 

parameters C1, C2, and C3.  For the 50-h aging group the shape function parameters were 

ଵܥ ൌ 100 MPa, ܥଶ ൌ 1.02݁ ൅ 03 MPa, and ܥଷ ൌ 9.00݁ െ 4.  Note that the value of C3 is 

significantly lower than the value C3 = 10 reported by McClung [26]. Furthermore, McClung 

[26] points out that C3 is not affected by prior isothermal aging. Further investigation revealed 

that C3 did not strongly influence the shape of the stress-strain curve.  By carrying out the 

MATLAB optimization with C3=10 new shape function parameters ܥଵ ൌ 100 MPa and ܥଶ ൌ

1.00݁ ൅ 03 MPa were obtained.  The stress-strain curves generated by using VBOP with these 

two sets of shape function parameters are shown in Figure 7.2. Note that increasing the value of 

C3 by more than four orders of magnitude has little effect on the shape of the stress-strain curve. 

Inspection of the shape function Equation 7.6 reveals that parameter C3 appears as a coefficient 

multiplying the inelastic strain. As the amount of the inelastic strain is rather small, parameter C3 

has little influence. To maintain consistency with previous research the value ܥଷ ൌ 10 will be 

used in this study. 
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Figure 7.2:  Simulated Stress-Strain Curves Generated Using VBOP with Different Values 
of the Shape Function Parameter C3 

 

Characterization of Model Parameters for PMR-15 Neat Resin Subjected to Prior Aging in 
Argon at 274 °C 
 The model characterization procedure outlined in the previous section was applied to 

PMR-15 aged in argon at 274 °C for 50, 100, 250, 500, and 1000 h.  The parameters which are 

not affected by prior isothermal aging (k1, k2, k3, C1, and C3) were determined from experimental 

results obtained for the 50-h aging group and then used for all other aging groups.  Modeling 

efforts for each aging group are discussed below. 
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Prior Aging for 50 h 

 The VBOP model parameters obtained at 288 ° for PMR-15 aged for 50 h at 274 °C in 

argon are summarized in Table 7-1.   

Table 7-1: VBOP Model Parameters at 288 °C for PMR-15 Neat Resin Subjected to 50 h of 
Prior Aging at 274 °C in Argon. 

Moduli E = 1830 MPa,  Et = 16.6 MPa 

Isotropic Stress A = 22.0 MPa 

Viscosity Function k1 = 1.15e+04 s, k2 = 29.8 MPa, k3 = 12.7 

Shape Function C1 = 100 MPa, C2 = 1000 MPa, C3 = 10.0 

 

The experimental results used to characterize the model for this aging group are 

compared with the VBOP simulations in Figure 7.3 and Figure 7.4.  The VBOP simulations of 

the stress-time behavior during relaxation slightly over predict the stress drop for the fastest prior 

strain rate in the early stages of relaxation.  The model simulations give a very good 

representation of the stress-time behavior during relaxation for the two intermediate prior strain 

rates. The VBOP under predicts stress drop late in the relaxation period for the specimen loaded 

at the slowest prior strain rate. Because of early failures only monotonic tensile tests conducted 

at strain rates of 10-4 and 10-6 s-1 provide useful experimental data beyond the initial quasi-elastic 

regime.  For all specimens tested, the model accurately simulates the experimental results up to 

failure (see Figure 7.4).  
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Figure 7.3:  A Comparison of Experimental and Simulated Stress Decrease vs. Relaxation 
Time Curves Obtained at 288 °C for PMR-15 Aged for 50 h at 274 °C in Argon.   

 

 

Figure 7.4:  A Comparison of Experimental and Simulated Monotonic Tensile Stress-Strain 
Curves Obtained at 288 °C for PMR-15 Aged for 50 h at 274 °C in Argon.    
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It is seen that the simulations of strain-controlled monotonic loading (Figure 7.4) and 

simulations of the relaxation response (Figure 7.3) are in good agreement with experimental 

data. Next the VBOP constitutive model and the model parameters determined in the 

characterization procedure at 288 °C for PMR-15 aged for 50 h at 274 °C in argon must be 

validated by comparing the model predictions with experimental results that differ in kind from 

those used for model characterization.  Three types of tests have been selected for validation: 

loading and unloading at a constant strain rate magnitudes, creep tests, and strain rate jump tests.  

These tests are described in greater detail in Chapter 5.  Predictions of the loading and unloading 

at constant strain rates of 10-3 and 10-5 s-1 are compared with experimental results in Figure 7.5. 

The strain rate sensitivity of the material during loading is well represented for both strain rates.  

The unloading behavior predicted by the VBOP model does not match the behavior observed in 

experiments. The model qualitatively predicts increased curvature of the unloading stress-strain 

curve with decreasing strain rate.  Yet in all cases the VBOP over predicts the strains measured 

immediately upon reaching zero stress.  Failure of the VBOP to accurately predict unloading 

behavior has been noted by both McClung [27] and Diedrick [10].  To produce quantitatively 

accurate predictions of the unloading behavior the model formulation would have to be modified. 
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Figure 7.5 A Comparison of Experimental and Predicted Stress-Strain Curves Obtained in 
Loading and Unloading at Two Constant Strain Rates at 288 °C for PMR-15 Aged for 50 h 

at 274 °C in Argon. 
  

The model characterization procedure employs strain-controlled experiments.  Therefore 

prediction of the stress-controlled experiments represents a more rigorous validation of the 

VBOP and of the model characterization procedure.  Figure 7.6 compares predictions with the 

experimental results produced in creep tests of 6-h duration conducted at 21 MPa, preceded by 

strain-controlled loading at 10-6 s-1 and 10-4 s-1.  The qualitative effect of prior strain rate is 

predicted well, higher prior strain rate results in larger creep strain.  However, the quantitative 

predictions are inadequate. The VBOP model over predicts the creep strain for both prior strain 
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rates. Diedrick reported similar discrepancies when modeling creep behavior at 260°C [10]. 

Because strain rate dependence is governed by the viscosity function, the results of creep tests 

could be used to characterize the viscosity function parameters of the VBOP.  However Diedrick 

noted that because calibration of the model based on relaxation data failed to produce 

quantitatively accurate predictions of creep response, characterization of the model based on 

creep data would likely result in inaccurate predictions of relaxation behavior. 

 

Figure 7.6:  A Comparison of Experimental and Predicted Creep Strain vs. Time Curves 
Obtained at 21 MPa and 288 °C for PMR-15 Aged for 50 h at 274 °C in Argon.   
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Predictions of the strain rate jump tests performed in strain control with the strain rates of 

10-3 then 10-5 s-1 are presented together with the experimental data in Figure 7.7. The VBOP 

successfully predicts the stress response during all stages of the test. The model predictions are in 

excellent agreement with experimental results.   

 

Figure 7.7:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Strain Rate Jump Tests at 288 °C for PMR-15 Aged for 50 h at 274 °C in Argon.   
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Prior Aging for 100 h 

 The VBOP model parameters obtained at 288 ° for PMR-15 aged for 100 h at 274 °C in 

argon are summarized in Table 7-2. 

Table 7-2: VBOP Model Parameters at 288 °C for PMR-15 Neat Resin Subjected to 100 h 
of Prior Aging at 274 °C in Argon. 

Moduli E = 1920 MPa,  Et = 36.4 MPa 

Isotropic Stress A = 23.0 MPa 

Viscosity Function k1 = 1.15e+04 s, k2 = 29.8 MPa, k3 = 12.7 

Shape Function C1 = 100 MPa, C2 = 1030 MPa, C3 = 10.0 

 

 The VBOP simulations of the relaxation behavior are compared with the experimental 

data in Figure 7.8.  Simulations generated for prior strain rates of at 10-4 then 10-6 s-1 are in 

excellent agreement with experimental results. For strain rates of at 10-3 then 10-5 s-1 the model 

simulations are in reasonable agreement with the data. 

 
Figure 7.8:  A Comparison of Experimental and Simulated Stress Decrease vs. Relaxation 

Time Curves Obtained at 288 °C for PMR-15 Aged for 100 h at 274 °C in Argon. 
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The simulations of the strain-controlled monotonic loading are compared with the results 

of the tensile tests in Figure 7.9. Stress-strain behavior is well represented by the VBOP with the 

experimental and simulated stress-strain curves showing little divergence for strains < 3.5%.  In 

the flow stress region the model predicts higher stress levels than those measured in experiments. 

This may be caused by a fairly high isotropic stress value determined for this aging group. 

 

Figure 7.9:  A Comparison of Experimental and Simulated Monotonic Tensile Stress-Strain 
Curves Obtained at 288 °C for PMR-15 Aged for 100 h at 274 °C in Argon.    

 

To validate the model parameters calculated for the 100-h aging group, predictions of 

strain-controlled loading and unloading at several strain rate magnitudes were generated with the 
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VBOP and compared with experimental data (see Figure 7.10). The stress-strain behavior on the 

loading path is predicted very well for all strain rates. The stress-strain behavior on the unloading 

path is predicted accurately only in the case of the slowest strain rate.       

 

Figure 7.10:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Loading and Unloading at 288 °C for PMR-15 Aged for 100 h at 274 °C in Argon. 

 

 Figure 7.11 compares predictions with the experimental results produced in creep tests of 

6-h duration conducted at 21 MPa, preceded by strain-controlled loading at 10-6 s-1 and 10-4 s-1. 

The VBOP considerably over predicts creep strains.  However, it should be noted that the 

specimen loaded to the creep stress at a strain rate of 10-4 s-1 produced an exceptionally low 

creep strain. In fact, the only specimen that produced less creep strain under the same test 
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conditions in the current study was the specimen subjected to 2000 h of prior aging.  It is likely 

that additional specimens in the 100-h aging group (if such were available) would have produced 

larger creep strains under the given test condition.   

 

Figure 7.11:  A Comparison of Experimental and Predicted Creep Strain vs. Time Curves 
Obtained at 21 MPa and 288 °C for PMR-15 Aged for 100 h at 274 °C in Argon. 

 

 The VBOP prediction of the strain rate jump test is compared with the experimental 

results in Figure 7.12. Note that during the initial loading at a strain rate of 10-3 s-1 the specimen 

produced higher stress levels than were typical for this aging group. Consequently the 

experimental stress levels exceeded the predicted ones. After the strain rate change the prediction 

was in better agreement with the experimental data.  
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Figure 7.12:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Strain Rate Jump Tests at 288 °C for PMR-15 Aged for 100 h at 274 °C in Argon.    

Prior Aging for 250 h 

 The VBOP model parameters obtained at 288 ° for PMR-15 aged for 250 h at 274 °C in 

argon are summarized in Table 7-3.   

Table 7-3: VBOP Model Parameters at 288 °C for PMR-15 Neat Resin Subjected to 250 h 
of Prior Aging at 274 °C in Argon. 

Moduli E = 1910 MPa,  Et = 58.0 MPa 

Isotropic Stress A = 23.9 MPa 

Viscosity Function k1 = 1.15e+04 s, k2 = 29.8 MPa, k3 = 12.7 

Shape Function C1 = 100 MPa, C2 = 1090 MPa, C3 = 10.0 
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 Simulations of the relaxation behavior are compared with the experimental data in Figure 

7.13. In the case of the three slowest prior strain rates, the simulations of the relaxation response 

agree well with the experimental results. In the case of fastest prior strain rate, the model over 

predicts the stress drop in the early stages of the relaxation. Yet after about 5 h of relaxation, 

model simulation and experimental results begin to converge.  

 

Figure 7.13:  A Comparison of Experimental and Simulated Stress Decrease vs. Relaxation 
Time Curves Obtained at 288 °C for PMR-15 Aged for 250 h at 274 °C in Argon.   
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A comparison of the simulations and experimental results for monotonic tension to 

failure at various strain rates is presented in Figure 7.14.  At the strain rates of 10-3 s-1 and 10-6 s-1 

the simulations are in excellent agreement with the experimental data. The stress-strain behavior 

produced at a strain rate of 10-4 s-1 was well modeled by the VBOP for strains < 2.5%, where 

experiment exhibited a sudden decrease in stress. Unfortunately due to a limited number of 

specimens additional tests could not be performed.  The specimen tested at10-5 s-1 produced 

higher than average stress levels and failed before plastic flow was fully established.

 

Figure 7.14:  A Comparison of Experimental and Simulated Monotonic Tensile Stress-
Strain Curves Obtained at 288 °C for PMR-15 Aged for 250 h at 274 °C in Argon.    
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To validate the model, predictions of strain-controlled loading and unloading were 

compared with experimental results (see Figure 7.15). In the case of loading at the two fastest 

strain rates, predictions are in good agreement with experimental results. However, the model 

under predicts the stress levels produced during loading at the slower strain rates. As was the 

case with other aging groups, the model does not accurately represent unloading stress-strain 

behavior at faster strain rates.  Conversely at 10-6 s-1, the unloading stress-strain behavior is well 

represented by the VBOP.  

 

Figure 7.15:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Loading and Unloading at 288 °C for PMR-15 Aged for 250 h at 274 °C in Argon.    
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Figure 7.16 compares prediction with the experimental results obtained in 6-h creep tests 

at 21 MPa, preceded by strain-controlled loading at 10-6 s-1 and at 10-4 s-1.  As was the case for 

other aging groups, the VBOP qualitatively captures dependence of creep response on prior 

strain rate, but over predicts the creep strain.     

 

Figure 7.16:  A Comparison of Experimental and Predicted Creep Strain vs. Time Curves 
Obtained at 21 MPa and 288 °C for PMR-15 Aged for 250 h at 274 °C in Argon.    
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 Predictions of the strain rate jump test are compared with experimental results in Figure 

7.17. Note that both specimens in this aging group subjected to the strain rate jump tests 

accumulated over 3% strain.  Overall, the VBOP predicts the behavior observed in the strain rate 

jump test well.  

 

Figure 7.17:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Strain Rate Jump Tests at 288 °C for PMR-15 Aged for 250 h at 274 °C in Argon.    
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Prior Aging for 500 h 

 Following the VBOP model characterization procedure proposed by McClung [27]. the 

shape function parameter C2=1000 MPa was obtained by optimization based on experimental 

data from monotonic tension to failure tests. The C2=1000 MPa was lower than the C2 values 

obtained for either the 100-h or the 250-h aging groups. Hence the experimental data from the 

monotonic loading portion of the stress-strain curve preceding relaxation were added to the 

optimization routine used to determine C2.  By using this larger sample group the optimal value 

C2 = 1130 MPa was found. Simulations of strain-controlled monotonic loading generated with 

the two different values of C2 are compared with the experimental data in Figure 7.18. It is seen 

that the simulations produced with the C2 = 1130 MPa better represent the observed behavior. 

Based upon this analysis the value of C2 = 1130 MPa was selected and used for all subsequent 

modeling of this aging group.  

 

Figure 7.18:  A Comparison of Experimental and Simulated Monotonic Tensile Stress-
Strain Curves Obtained at 288 °C for PMR-15 Aged for 500 h at 274 °C in Argon. Stress-

Strain Curves Simulated by VBOP with Different Values of the Parameter C2.   
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The VBOP model parameters obtained at 288 ° for PMR-15 aged for 500 h at 274 °C in 

argon are summarized in Table 7-4.   

Table 7-4: VBOP Model Parameters at 288 °C for PMR-15 Neat Resin Subjected to 500 h 
of Prior Aging at 274 °C in Argon. 

Moduli E = 1940 MPa,  Et = 61.8 MPa 

Isotropic Stress A = 24.6 MPa 

Viscosity Function k1 = 1.15e+04 s, k2 = 29.8 MPa, k3 = 12.7 

Shape Function C1 = 100 MPa, C2 = 1130 MPa, C3 = 10.0 

 The effects of prior strain rate on relaxation behavior are well represented by the VBOP 

as shown in Figure 7.19.  The model simulations are in excellent agreement with the 

experimental data for the prior strain rates of 10-4 and 10-5 s-1. In the case of other prior strain 

rates, the simulations are also very close to experimental results.  

 

Figure 7.19:  A Comparison of Experimental and Simulated Stress Decrease vs. Relaxation 
Time Curves Obtained at 288 °C for PMR-15 Aged for 500 h at 274 °C in Argon.   
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Figure 7.20 compares predictions of the loading and unloading at different constant strain 

rates with the experimental data. It is seen that the loading stress-strain behavior is predicted 

accurately at strain rates except at the strain rate of 10-6 s-1, which produced uncharacteristically 

high stress levels in experiment. As noted earlier, the unloading stress-strain behavior was not 

modeled accurately.   

 

Figure 7.20:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Loading and Unloading at 288 °C for PMR-15 Aged for 500 h at 274 °C in Argon.     
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As seen in Figure 7.21 the VBOP over predicts strains produced in creep tests at 21 MPa 

preceded by strain-controlled loading at 10-4 s-1 and at 10-6 s-1.  

 

Figure 7.21:  A Comparison of Experimental and Predicted Creep Strain vs. Time Curves 
Obtained at 21 MPa and 288 °C for PMR-15 Aged for 500 h at 274 °C in Argon.    
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The prediction of the strain rate jump test is compared with the experimental results in 

Figure 7.22.  Initially the prediction diverges from the test results.  However, the model 

represents the change in stress in response to the change in strain rate.  

 

Figure 7.22:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Strain Rate Jump Tests at 288 °C for PMR-15 Aged for 500 h at 274 °C in Argon.    

 

Prior Aging for 1000 h 

 Due to increased brittleness only three specimens in this aging group were 

subjected to the monotonic test with the relaxation period at the strain of 3%. Based on the stress 

levels at the end of relaxation isotropic stress A=28 MPa was determined. However, using 

VBOP with this value of isotropic stress generated unacceptable simulations of the monotonic 

tension to failure tests. Numerical experiments with several lower values of isotropic stress A 

were performed. Based on the results, a value of isotropic stress A=26 MPa was selected for this 
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aging group. The VBOP model parameters obtained at 288 ° for PMR-15 aged for 1000 h at 274 

°C in argon are summarized in Table 7-5.   

Table 7-5: VBOP Model Parameters at 288 °C for PMR-15 Neat Resin Subjected to 1000 h 
of Prior Aging at 274 °C in Argon. 

Moduli E = 1990 MPa,  Et = 48.0 MPa 

Isotropic Stress A = 26.0 MPa 

Viscosity Function k1 = 1.15e+04 s, k2 = 29.8 MPa, k3 = 12.7 

Shape Function C1 = 100 MPa, C2 = 1160 MPa, C3 = 10.0 

 

 Simulations of the relaxation behavior are compared with the experimental results in 

Figure 7.23. As noted for other aging groups, the VBOP represents relaxation behavior 

accurately, only slightly over predicting the stress drop for fast prior strain rates and under 

predicting the stress drop for slow prior strain rates.  

The simulations of the monotonic stress-strain behavior are in good agreement with the 

experimental results, as seen in Figure 7.24.  Initial deformation behavior is modeled well at all 

but the slowest strain rates and plastic deformation is modeled well at both the fastest and the 

slowest strain rates.  The only discrepancy between simulated and observed stress-strain 

behavior is seen at the strain rate of 10-5 s-1, which may be due to specimen-to-specimen 

variability.  

Predictions of the loading and unloading at various strain rates are compared with the 

experimental results in Figure 7.25. Stress-strain behavior upon loading path is well represented 

by the VBOP. Conversely, the stress-strain behavior during unloading at faster strain rates is 
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modeled poorly.  However, at the slowest strain rate the prediction of unloading behavior is 

remarkably accurate.  

Figure 7.26 compares prediction with the experimental results obtained in creep tests 

preceded by strain-controlled loading to the creep stress level of 21 MPa. As was the case for 

other aging groups, the VBOP accurately predicts the effect of prior strain rate on creep 

response, but over predicts the amount of creep strain. 

The limited results of the strain rate jump test (SRJT) obtained for this aging group do not 

provide a reliable basis for model verification. However, Figure 7.27 shows a reasonable 

agreement between the prediction of the SRJT and the existing experimental results.  

 

Figure 7.23:  A Comparison of Experimental and Simulated Stress Decrease vs. Relaxation 
Time Curves Obtained at 288 °C for PMR-15 Aged for 1000 h at 274 °C in Argon.   
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Figure 7.24:  A Comparison of Experimental and Simulated Monotonic Tensile Stress-
Strain Curves Obtained at 288 °C for PMR-15 Aged for 1000 h at 274 °C in Argon.   

 

Figure 7.25:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Loading and Unloading at 288 °C for PMR-15 Aged for 1000 h at 274 °C in Argon.     
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Figure 7.26:  A Comparison of Experimental and Predicted Creep Strain vs. Time Curves 
Obtained at 21 MPa and 288 °C for PMR-15 Aged for 1000 h at 274 °C in Argon.    

 

Figure 7.27:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Strain Rate Jump Tests at 288 °C for PMR-15 Aged for 1000 h at 274 °C in Argon.    
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VBOP Model Parameters as Functions of Prior Aging Time  

McClung [27] observed that several VBOP model parameters obtained for PMR-15 

subjected to prior isothermal aging did not change with aging duration.  These were the viscosity 

function parameters k1, k2, k3 and the shape function parameters C1 and C3.  All other VBOP 

parameters used to model the behavior of PMR-15 subjected to prior isothermal aging were 

functions of aging duration.  This research has confirmed that the VBOP is capable of 

representing behavior of PMR-15 subjected to prior isothermal aging. Furthermore, the only 

model parameters dependent on prior aging time are E, Et, A, and C2.  

The elastic modulus as a function of prior aging time is shown in Figure 7.28 for PMR-15 

subjected to prior aging at 274 °C.  It is seen that the average elastic modulus increases with 

increasing prior aging time.  However, it should be noted that this increase in average elastic 

modulus is discernable because data for a large number of specimens was available.  In contrast 

to the large number of data points available to calculate the average quasi-elastic modulus, it was 

necessary to evaluate the average tangent modulus, Et, from a very limited number of data 

points.  Yet it is still possible to recognize a trend of increasing tangent modulus with increasing 

prior aging time in Figure 7.29.   
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Figure 7.28:  Elastic Modulus, E, at 288 °C as a Function of Prior Aging Time at 274 °C in 
Argon for PMR-15.  

 

 

Figure 7.29:  Tangent Modulus, Et, at 288 °C as a Function of Prior Aging Time at 274 °C 
in Argon for PMR-15. 
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 To predict the behavior of specimens subjected to prior aging times other than those 

investigated experimentally it is necessary to model the change in the VBOP parameters with 

prior aging time.  This work uses the power law structure proposed by McClung [27] to expand 

the VBOP parameters into functions of prior aging time. To validate this approach the test results 

obtained for specimens aged for 50 to 1000 h were used to predict the behavior of the specimens 

aged for 2000 h. A MATLAB program was used to optimize all power law function parameters 

based upon the 50-1000 h aging data.  

 The average values of the elastic modulus are plotted vs. prior aging time in Figure 7.30.  

Based on these results the elastic modulus is represented as the power law function of the prior 

aging time, 

ܧ   ൌ 0.0162 ൈ ௔ݐ
଴.ଷହ଺ ൅ 1.80 (7.8) 

The power law function in Equation (7.8) is used to predict the elastic modulus for the 2000-h 

aging group. The predicted elastic modulus is slightly higher than the experimental value. 

However, because this error is small Equation (7.8) is an appropriate choice for representing the 

modulus as a function of prior aging time for aging durations up to and including 2000 h. 
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Figure 7.30:  Elastic Modulus, E, at 288 °C as a Function of Prior Aging Time at 274 °C in 
Argon for PMR-15. 

 

 The average values of the tangent modulus are plotted vs prior aging time in Figure 7.31. 

Based on these results the tangent modulus is represented as the power law function of the prior 

aging time,  

௧ܧ   ൌ 1.33 ൈ ௔ݐ
଴.ସହଽ ൅ 24.5 (7.9) 

Recall that in the case of all aging groups the tangent modulus was determined based on the 

limited amount of experimental data. As a result the evaluation of the power law parameters is 

difficult.  Yet the power law function in Equation (7.9) does predict the tangent modulus for the 
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2000-h group that is within 15% of the experimentally measured value, which is admirable 

considering the limited amount and high variability of the characterization data. 

 

Figure 7.31:  Tangent Modulus, Et, at 288 °C as a Function of Prior Aging Time at 274 °C 
in Argon for PMR-15. 

 

 The isotropic stress A is plotted vs. prior aging time in Figure 7.32. Based on the results 

shown in Figure 7.32, the isotropic stress is represented as the power law function of the prior 

aging time,  

ܣ     ൌ 0.6174 ൈ ௔ݐ
଴.ଷଶଽ ൅ 20.0 (7.10) 

Equation (7.10) predicts the isotropic stress value for the 2000-h aging group that is within 0.3 

MPa of the experiment based value. This result indicates that the power law relationship in 
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Equation (7.10) is well suited to representing changes in isotropic stress with prior aging time at 

274°C.  

 

Figure 7.32:  Isotropic Stress, A, at 288 °C as a Function of Prior Aging Time at 274 °C in 
Argon for PMR-15. 

 

 The shape function parameter C2 is plotted vs prior aging time in Figure 7.33. Based on 

these results the shape function parameter C2 is represented as the power law function of the 

prior aging time, 

ଶܥ   ൌ 0.00280 ൈ ௔ݐ
଴.ଷଶଶ ൅ 0.910 (7.11) 

Note that the C2 value predicted for the 2000-h aging group using Equation (7.11) is 80 MPa 

higher than the experiment based value.   
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Figure 7.33:  Shape Function Parameter C2 at 288 °C as a Function of Prior Aging Time at 
274 °C in Argon for PMR-15. 

Predictions of Deformation Behavior for the PMR-15 Neat Resin Subjected to 2000 h of 
Prior Aging at 274 °C in Argon  

 Validation of both the VBOP model characterization procedure and the VBOP model 

extension to include the effects of prior aging was accomplished by comparing model predictions 

with the experimental data for the 2000-h aging group. The model parameters determined from 

test data obtained for specimens subjected to prior aging for 50-1000 h were used to predict the 

VBOP model parameters for specimens subjected to 2000 h of prior aging.  The VBOP model 

parameters calculated at 288 ° for PMR-15 aged for 2000 h at 274 °C in argon are summarized in 

Table 7-6. 
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Table 7-6: VBOP Model Parameters at 288 °C for PMR-15 Neat Resin Subjected to 2000 h 
of Prior Aging at 274 °C in Argon. 

Moduli E = 2030 MPa,  Et = 68.3 MPa 

Isotropic Stress A = 27.5 MPa 

Viscosity Function k1 = 1.15e+04 s, k2 = 29.8 MPa, k3 = 12.7 

Shape Function C1 = 100 MPa, C2 = 1240 MPa, C3 = 10.0 

 

 Predictions of the relaxation response are compared with the experimental results in 

Figure 7.34.  The model accurately predicts the relaxation behavior for the prior strain rate of 10-

6 s-1. Conversely, the relaxation stress drop for the prior strain rate of 10-3 s-1 is over predicted.   

The VBOP predictions of the monotonic stress-strain behavior compare reasonably well 

with the experimental results (see Figure 7.35).  Stress-strain behavior at the strain rate of 10-6 s-1 

is accurately modeled. In contrast, the model over predicts the flow stress for the strain rate of 

10-5 s-1. Due to early failures experimental results produced at 10-3 s-1 and at 10-4 s-1 could not be 

used for model validation.  
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Figure 7.34:  A Comparison of Experimental and Simulated Stress Decrease vs. Relaxation 
Time Curves Obtained at 288 °C for PMR-15 Aged for 2000 h at 274 °C in Argon.    

 

 

Figure 7.35:  A Comparison of Experimental and Predicted Monotonic Tensile Stress-
Strain Curves Obtained at 288 °C for PMR-15 Aged for 2000 h at 274 °C in Argon.   
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 Predictions of loading and unloading at various constant strain rates are compared with 

the experimental results in Figure 7.36.  The stress-strain behavior during loading is adequately 

modeled with some discrepancies likely due to specimen-to-specimen variability. The inability 

of the VBOP to accurately model the unloading stress-strain behavior is again observed for this 

aging group.  

Figure 7.37 compares predictions with experimental results obtained in creep tests. The 

VBOP predicts decreasing creep strain accumulation with increasing aging duration.  The VBOP 

also predicts the increasing creep strain accumulation with increasing prior strain rate. However, 

the model over predicts the creep strain for this aging group.  

Because of early specimen failure only limited results of the strain rate jump test were 

obtained for this aging group. Figure 7.38 shows a reasonable agreement between the prediction 

of the strain rate jump test and the existing experimental results.  

 Overall the behavior of the PMR-15 neat resin subjected to 2000 h of prior aging at 274 

°C in argon is well represented by the VBOP with the predicted model parameters.  The 

modeling results reveal that the deformation behavior of PMR-15 subjected to prior aging at 274 

°C can be adequately modeled with the VBOP by expanding E, Et, A, and C2 into power law 

functions of the prior aging time. 
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Figure 7.36:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Loading and Unloading at 288 °C for PMR-15 Aged for 2000 h at 274 °C in Argon.      

 

 

Figure 7.37:  A Comparison of Experimental and Predicted Creep Strain vs. Time Curves 
Obtained at 21 MPa and 288 °C for PMR-15 Aged for 2000 h at 274 °C in Argon.    
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Figure 7.38:  A Comparison of Experimental and Predicted Stress-Strain Curves Obtained 
in Strain Rate Jump Tests at 288 °C for PMR-15 Aged for 2000 h at 274 °C in Argon.     

 

Comparison of VBOP Model Parameters Obtained for PMR-15 Subjected to Prior Aging 
at 274 °C and 288 °C 

A key objective of this research has been to explore and quantify the differences in 

deformation beahvior at 288 °C resulting from prior aging at different temperatures, i. e. 274 °C 

and 288 °C. To further this understanding, the evolutions of the VBOP parameters with prior 

aging time obtained for each aging temperature are compared. 

Figure 7.39 compares the calculated and experimental elastic modulus values as functions 

of prior aging time for the aging temperature of 288 °C and for the aging temprerature of 274 °C. 

In the case of prior aging temperature of 274 °C, the calculated modulus values are generated 

using Equation (7.8). In the case of prior aging temperature of 288 °C, the calculated modulus 

values are generated using Equation (7) from Ref [24]. In order to reduce data scatter, these 
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results are normalized by the average room temperature modulus value. The evolution in elastic 

modulus for the two aging temperatures shows verry little difference.  It may be noted that there 

is virtually no change in elastic modulus for the specimens aged for 1000-2000 h at 274 °C, 

however, the power law equation predicts a modest rise. This may be evidence of a saturation of 

chain scisions and cross linking for PMR-15 at this temperature.  Yet, due to the large ammount 

of data scatter observed in the elastic modulus (see Figure 7.30) a larger number of tests would 

be required to draw any firm conclusions. 

 

Figure 7.39:  Elastic Modulus, E, at 288 °C as a Function of Prior Aging Time at 274 °C in 
Argon for PMR-15 Polymer, Compared to Elastic Modulus, E, at 288 °C as a Function of 
Prior Aging Time at 288 °C in Argon for PMR-15 Polymer. Experimental Data at 288 °C 

from McClung [27]. 
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Figure 7.40 compares the calculated and experimental tangent modulus values as 

functions of prior aging time for the aging temperature of 288 °C and for the aging temprerature 

of 274 °C.  The evolution in tangent modulus for the two aging temperatures is very similar.   

 

Figure 7.40:  Tangent Modulus, Et, at 288 °C as a Function of Prior Aging Time at 274 °C 
in Argon for PMR-15 Polymer, Compared to Tangent Modulus, Et, at 288 °C as a Function 
of Prior Aging Time at 288 °C in Argon for PMR-15 Polymer. Experimental Data at 288 °C 

from McClung [27]. 
 

Figure 7.41 compares the calculated and experimental isotropic stress values as functions 

of prior aging time for the aging temperature of 288 °C and for the aging temprerature of 274 °C.  

The evolution in isotropic stress for the two aging temperatures is very similar.   

.  
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Figure 7.41:  Isotropic Stress, A, at 288 °C as a Function of Prior Aging Time at 274 °C in 
Argon for PMR-15 Polymer, Compared to Isotropic Stress, A, at 288 °C as a Function of 
Prior Aging Time at 288 °C in Argon for PMR-15 Polymer. Experimental Data at 288 °C 

from McClung [27].    
 

 Figure 7.42 compares the calculated and experimental values of the shape function 

parameter C2 as functions of prior aging time for the aging temperature of 288 °C and for the 

aging temprerature of 274 °C.  As seen in Figure 7.42, the shape function parameter C2 is 

quantitatively influenced by prior isothermal aging temperature. However, the evolution in the 

shape function parameter C2 for the two aging temperatures is qualitative similar. Variation in C2 

with prior aging time for two aging temperatures is represented by nearly parallel power law 

curves.  
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Figure 7.42:  Shape Function Parameter, C2, at 288 °C as a Function of Prior Aging Time 
at 274 °C in Argon for PMR-15 Polymer, Compared to Shape Function Parameter, C2, at 

288 °C as a Function of Prior Aging Time at 288 °C in Argon for PMR-15 Polymer. 
Experimental Data at 288 °C from McClung [27].      

 

 Additional differences may be noted in the behavior of specimens aged at 274 °C and 

specimens aged at 288 °C which are not directly modeled by the VBOP.  Experimental results 

reveal that the specimen aged at a lower temperature did not accumulate as much strain in creep 

as did the specimen aged at a higher temperature. However, it is difficult to draw a conclusion 

based on a small number of tests. Additional creep tests would have to be performed to make a 

definitive conclusion. The most marked change in behavior of specimens aged at different 

temperatures is seen in failure strain.  Aging for durations of 1000 hours or longer at 288 °C 
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resulted in early failures, whereas multiple specimens aged at 274 °C for durations up to 2000 

hours produced significant inelastic strains. This is illustrated in Figure 7.43(a) and 7.43 (b), 

where tensile stress-strain curves obtained at 288 °C for the PMR-15 polymer subjected to prior 

aging for 2000 h in argon at 274 °C and at 288 °C are shown, respectively. The average failure 

strain for specimens aged for 2000 hours at 274 °C was 4.3% whereas the average failure strain 

for specimens aged for 2000 h at 288 °C was only 1.5%. Even though the VBOP model does not 

have a parameter directly associated with embrittlement, which would account for decreased 

failure strain, this dramatic difference in material behavior should not be ignored.    

  

   (a)                                                  (b) 

Figure 7.43:  Stress-Strain Curves Obtained at 288 °C for PMR-15 Subjected to Prior 
Aging for 2000 h in Argon at: (a) 274 °C and (b) 288 °C. Data for PMR-15 aged at 288 °C 

from McClung [27].   
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8. Conclusions and Recommendations 

Concluding Remarks 

 Deformation behavior of PMR-15 neat resin subjected to prior aging at 274 °C was 

investigated at 288 °C.  Exploratory tests revealed positive non linear strain rate dependence 

during both loading and unloading.  The flow stress levels increased nonlinearly with increasing 

strain rate. Additionally, increase in strain rate resulted in more abrupt transitions from elastic to 

the inelastic region of the stress-strain curve. In loading and unloading tests performed at 

constant strain rate magnitudes the strain measured immediately upon unloading to zero stress 

decreased with increasing strain rate magnitude. Effects of prior strain rate were observed in both 

the relaxation and creep tests. Results of the relaxations tests revealed that an increase in prior 

strain rate caused increased stress drop during relaxation.   Creep tests demonstrated that larger 

creep strains were accumulated in creep tests preceded by loading at a faster strain rate. Results 

of the strain rate jump tests performed in this study also demonstrated that the material did not 

exhibit the strain rate history effect. 

 The following effects of prior aging at 274 °C on the inelastic behavior at 288 °C were 

identified:  

 Elastic modulus increased with prior aging time 

 Tangent modulus increased with prior aging time 

 The knee of the tensile stress-strain curve became increasingly more pronounced with 

increasing prior aging time  

 Flow stress increased with prior aging time 
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 Creep strain accumulation decreased with increasing prior aging time 

 Progressive embrittlement with increasing prior aging time 

  Notably the relaxation behavior was little affected prior aging at 274°C. Likewise the 

specimens aged for various durations exhibited similar lack of the strain rate history effect. 

The experimental results presented here strongly suggest the usefulness of the overstress 

concept in the modeling inelastic deformation at 288 ºC of the PMR-15 neat resin subjected to 

prior aging at 274 °C. Hence the VBOP constitutive model was selected to simulate and predict 

the observed deformation behaviors. A systematic model characterization procedure developed 

by McClung [27] was used to determine the VBOP model parameters based on the results of the 

strain-controlled experiments obtained for the PMR-15 specimens aged for 50, 100, 250, 500, 

and 1000 h. To account for the effect of prior aging at 274 °C in argon on the inelastic behavior 

at 288 °C using the VBOP it was sufficient to make the elastic modulus, the tangent modulus, the 

isotropic stress, and the shape function parameter C2 dependent on the prior aging time. The 

viscosity function and the C1 and C3 parameters of the shape function showed no dependence on 

prior isothermal aging history. The modified VBOP model was validated by comparing 

predictions with the experimental results for the stress and strain-controlled experiments that 

differ in kind from those used for model characterization.  

  Model parameters used to represent the deformation behavior at 288 °C of the PMR-15 

aged at 274 °C for 2000 h were predicted from experimental data obtained for specimens aged at 

274 °C for 50 to 1000 h.  The VBOP model predictions obtained for the 2000-h aging group 

were in good agreement with the experimental results. The VBOP was able to accurately 

represent loading stress-strain behavior, relaxation response, and strain rate jump behavior for all 
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aging groups.  Modeling of the stress-strain behavior during unloading and creep response 

produced results which were qualitatively correct but were quantitatively inaccurate in many 

cases.   

 The effects of prior aging at 274 °C and 288 °C on deformation behavior at 288 °C were 

compared.  All but one of the VBOP model parameters used to represent the behavior of PMR-

15 at 288 °C were insensitive to the change in aging temperature. The model parameter C2 

experienced considerably greater growth due to aging at 288 °C as opposed to aging at 274 °C. 

Additionally, prior aging temperature had a marked effect on the capacity of the specimens to 

accumulate inelastic strain. This was particularly evident in the behavior of specimens subjected 

to long aging durations.  Specimens aged at 274 °C for up to 2000 h produced substantial 

inelastic strains, while the specimens aged at 288 °C for over 500 h rarely produced strains 

outside the quasi elastic region.   

Recommendations 

 Further research is needed to thoroughly understand and quantify the effects of aging 

temperature on the deformation behavior of high-temperature polymers. Investigation of the 

deformation behavior at a single temperature (i.e. 288 °C) for specimens subjected to prior aging 

at various temperatures will provide means to isolate and identify the effects of prior aging 

temperature.  Subsequent study of aging temperatures both above 288 °C and below 274 °C will 

be required.  Additionally, testing of un-aged specimens at various temperatures will provide 

data necessary to understand and model the effects of temperature on the deformation behavior.  
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Combining the results of these two directions of research will allow for independent selection of 

test temperature, aging temperature, and aging duration when predicting material behavior.     
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